Beamspace dual signal subspace projection (bDSSP): A method for separating deep brain activities from superficial brain activities:

Kensuke Sekihara¹,², Yoshiaki Adachi³, Hiroshi K. Kubota⁴, Srikantan S. Nagarajan⁵

¹) Tokyo Medical and Dental University
²) Signal Analysis Inc.
³) Kanazawa Institute of Technology
⁴) Ricoh Ltd.
⁵) University of California, San Francisco
We have proposed a novel method for separating deep brain activities from superficial brain activities. The proposed method is based on the ideas of beamspace methodology [1,2] and of dual signal subspace projection[3].

The prerequisite of the method is prior knowledge on the approximate location of the deep source. The method first computes beamspace basis vectors using the information on the location of deep source. It then projects the data vector onto the inside and outside the span of the beamspace basis vectors, creating two sets of data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain signal subspace of the superficial sources.

The original data matrix is projected onto the subspace orthogonal to this signal subspace to suppress the activities of the superficial sources. The proposed method is validated by the computer simulation and by experiments using a phantom that has two sources, corresponding to deep and superficial sources.
[References]

Beamspace processing

Beamspace processing is a method of projecting the data vector onto a low-dimensional subspace by using

\[y(t) = \sum_{j=1}^{r} c_j(t) u_j \]

where \(r \ll M \), and \(u_1, \ldots, u_r \) are the beamspace basis vectors.

The gram matrix, which represents the second moment of the lead field matrix, is computed from a small, localized region that contains the deep source. The basis vectors, \(u_1, \ldots, u_r \), can be obtained from the eigenvectors corresponding to distinctively large singular values.

Beam space projector is obtained such that:

\[
P_b = \begin{bmatrix} u_1, \ldots, u_r \end{bmatrix} \begin{bmatrix} u_1, \ldots, u_r \end{bmatrix}^T
\]
bDSSP Algorithm

Data Model:

\[\mathbf{B} = \mathbf{B}_D + \mathbf{B}_{SP} + \mathbf{B}_\varepsilon \]

- \(\mathbf{B}_D \): Signal from deep source,
- \(\mathbf{B}_{SP} \): Signal from superficial source,
- \(\mathbf{B}_\varepsilon \): Sensor noise.

Using the beamspace projector, DSSP computes two kinds of spatiotemporal matrices:

\[\mathbf{P}_b \mathbf{B} = \mathbf{B}_D + \mathbf{P}_b \mathbf{B}_{SP} + \mathbf{P}_b \mathbf{B}_\varepsilon \]
\[(\mathbf{I} - \mathbf{P}_b) \mathbf{B} = (\mathbf{I} - \mathbf{P}_b) \mathbf{B}_{SP} + (\mathbf{I} - \mathbf{P}_b) \mathbf{B}_\varepsilon \]

DSSP estimates the signal subspace of the superficial source, using:

Signal subspace of the superficial source

\[= \text{row space of } \mathbf{B}_{SP} \approx (\text{row space of } \mathbf{P}_b \mathbf{B}) \cap (\text{row space of } (\mathbf{I} - \mathbf{P}_b) \mathbf{B}) \]
SVD of $P_b B$ and $(I - P_b)B$:

$$P_b B = S \Lambda D^T = S \Lambda \begin{bmatrix} d_1, \ldots, d_{\phi}, \ldots, d_M \end{bmatrix}^T$$

$$(I - P_b)B = T \Lambda' E^T = T \Lambda' \begin{bmatrix} e_1, \ldots, e_{\phi}, \ldots, e_M \end{bmatrix}^T$$

Orthonormal basis vectors of the intersection between span$\{d_1, \ldots, d_{\phi}\}$ and span$\{e_1, \ldots, e_{\phi}\}$ can be obtained using an algorithm described in [4]:

Denoting these basis vectors by ψ_1, \ldots, ψ_r, signal from the deep source can be retrieved using:

$$\hat{B}_D = B(I - [\psi_1, \ldots, \psi_r][\psi_1, \ldots, \psi_r]^T)$$

Computer simulation

CTF sensor array

Superficial source

Deep source

Simulated sensor time courses

Ground truth

Sensor time courses corresponding to the superficial source activity

Sensor time courses corresponding to the deep source activity

bDSSP results
Disc-shaped dry phantom used in our experiments

These two pairs of sources were used.

Phantom experiment I

- Two sources near Parietal lobe.
- Source are 2cm apart.
- Ricoh 160-channel sensors used.
Simulated sensor data when two sources are active

superficial source: 1.42 mA, deep source: 0.225 mA

bDSSP results of estimating deep source activity
Phantom experiment II

- Two sources near Temporal lobe.
- Source are 4cm apart.
- Ricoh 160-channel sensors used.

Superficial source activity

Deep source activity
Simulated sensor data when two sources are active

bDSSP results of estimating deep source activity

superficial source: 1.14 mA, deep source: 0.25 mA
Summary

• A novel algorithm, called bDSSP, is proposed to separate deep brain activities from superficial brain activities.

• Results of computer simulation and experiments using phantom data show the effectiveness of the proposed algorithm.

The paper “Subspace-based interference removal methods for multichannel biomagnetic sensor arrays” has been accepted for publication in Journal of Neural Engineering. The PDF can be downloaded from: