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Summary
The notion of the signal and noise subspaces has been considered 

useful in biomagnetic signal processing. Signal Space Projection 
(SSP) uses it for artifact reduction [1], and the MUSIC algorithm 
uses it for source localization. So far, the signal and noise subspaces 
are defined in the spatial domain in which the signal subspace is 
defined as the span of the source lead field vectors. 

This paper proposes for the first time (as far as the authors know) 
to define the signal subspace in the time domain. That is, the signal 
subspace is defined as the span of row vectors that contain the 
source time courses. (Such row vectors are referred to as the source 
time course vectors. )

By defining the time domain signal subspace in this manner, we 
can derive symmetric relationships between the time domain signal 
subspace and the spatial domain signal subspace.  For example, 
while the sensor array outputs at a particular time point is expressed 
as a linear combination of the source lead field vectors, the outputs 
of a particular sensor is expressed as a linear combination of the 
source time course vectors.



Using the time-domain signal subspace, it is possible to interpret 
various interference removal methods that have been considered 
different as the time domain SSP. Such methods include the adaptive 
noise cancelling [2], sensor noise suppression [3], common temporal 
subspace projection [4], spatio-temporal tSSS[5] and recently 
proposed dual signal subspace projection [6]. Therefore, the notion of 
time-domain signal subspace can provide a broader perspective and 
useful insights over existing and new artifact/interference removal 
methods. 
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Signal subspace in spatial domain

Sensor data：

signal noise

We assume that a total of Q discrete sources exist. Then, the signal vector is 
expressed as a linear combination of source lead field vectors.

This
SE is referred to as the signal subspace

( ) ( )St t= +y y ε

S Sy E∈Thus, defining , then holds

lead field vector of the qth source:ql

qs t( ) : activity of the qth source at time t



Signal subspace in time-domain

Data matrix

Data is measured at 

The time-course (row) vector of the qth source is defined as

is defined as the signal subspace in time domain.

SE=Column span of 
SB

SK=Row span of 
SB

Each column of 

Each row of 

Symmetric relationships



Signal space projection (SSP) for interference suppression[1]

Data model:
S I ε= + +B B B B

Spatial domain SSP

• Assume the existence of interference-only data:
e I ε= +B B B

• Using      , the basis vectors of the interference subspace is obtained 
and the projector       is computed using the basis vectors.eB

IP

• Interference suppression is attained by computing:
I−I P B( )

Time domain SSP

If the projector to the time-domain interference subspace      is obtained, 
interference suppression is attained by computing IΠ

I−B I Π( ).

IΠ

Various methods for denoising and interference suppression can be 
interpreted as time domain SSP. They differ only in a way how to 
derive      .



Sensor data：

Reference sensor data：

Adaptive noise cancelling (ANC)[2]
Data model

( ) ( ) ( )t t t= +y Ax vRegress         with        :tx( )ty( )

The residual term          is the interference-removal results, and 
expressed as 

tv( )

where

Using data matrices, the residual term V is expressed as

T T −X XX X1( ) is the projector onto the row span of X, and because  
the row span of X approximates the interference subspace, ANC can be 
interpreted as time-domain SSP.



Sensor data：

Reference sensor data：

Common temporal mode subspace projection (CtSP)[4]

Data model

= −ˆ ( )
S I

B B I Π

Considering

We have

Deriving basis vectors of the intersection1 ,
we can get the projector onto KI and the time-domain SSP is performed:

The notation rspan(A) indicates the row span of the matrix A.
1Golub and Van Loan (1996)  Matrix computations. The Johns Hopkins University Press



S I ε= + +B B B BSensor data：

Spatio-temporal signal space separation (tSSS)[5]

Data model (The method does not require reference sensor data.)

S I
= −B B I Πˆ ( )

We can show:

Deriving basis vectors of the intersection
we can get the projector onto KI and the time-domain SSP is performed:

• The sensor data is projected onto the internal and external regions of the 
sensor array using the SSS basis vectors.

• This separation can be done by using the SSS separators  ΓS derived such 
that:                                        where C and D are matrices whose 
columns are SSS basis vectors of the internal and external regions.

T T T
S

−= +Γ CC CC DD 1( )



S I ε= + +B B B BSensor data：

Dual signal subspace projection (DSSP)[6]

Data model (The method does not require reference sensor data.)

S I
= −B B I Πˆ ( )

rspan rspan rspan rspan
rspan rspan rspan

S S S S I S

S S I S

ε

ε

=
− = − −

P B P B P B P B
I P B I P B I P B
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Considering

rspan rspan rspan
S S I I

K− = =P B I P B B( ) (( ) ) ( )

We have

Deriving basis vectors of the intersection
we can get the projector onto KI and the time-domain SSP is performed:

rspan rspan
S S

−P B I P B( ) (( ) )

• The sensor data is projected onto the inside and outside the pseudo signal 
subspace.

• The projector PS is derived based on the span of sensor lead field over the 
source space.



S ε= +B B BSensor data：

Sensor noise suppression (SNS)[3]
Data model

Defining the j th row of B as β j , the assumption of the method is

Defining 

≠
= =∑T T

j i j j j
i j

wβ β ΩW

, the j th row of B

is expressed as 

Thus, denoised β j is derived as
T T

j j j j j j
−=β β Ω Ω Ω Ω1ˆ ( )

approximates the projector onto the row span of B and 
the row span of B approximates the row span of BS , the signal subspace.
Thus, SNS can be interpreted as time-domain SSP.

T T
j j j j

−Ω Ω Ω Ω1( )



One example of  cases in which the time-domain SSP interpretation is 
useful was simulated and the results are shown in the following slides.

• The CTF sensor array with six imaginary reference sensors (Fig.1) was 
assumed for data generation.

• A single source was assumed to exist 7-cm below the center of the array, 
and two interference sources having independent random time courses 
were assumed to exist 500-1000 cm far from the sensor array.

• Signal sensor time courses and interference-overlapped sensor time 
courses are shown in Fig. 2

• Reference sensor time courses and the results of ANC interference removal 
are shown in Fig. 3

• Next, low-frequency disturbance was added only to the reference sensor 
time courses. Results of ANC, as well as the reference sensor time courses, 
are shown in Fig. 4.  Surprisingly, there is no influence of the disturbance 
in the interference-removed results.



• Interference data were re-generated with increasing the number of 
interference sources (from two) to six.  The low-frequency disturbance 
was again added only to the reference sensor time courses. The results of 
ANC, as well as the reference sensor time courses, are shown in Fig. 6.  
The ANC method fails to remove the interference in this case.

• When the low-frequency disturbance was not added, the ANC can remove 
the interference. The reference sensor time courses and the results of ANC 
were shown in Fig. 7.

When two interference sources exist, the relationship holds:

rspan
I

K=X d( ) { }

where      indicates the subspace spanned by the disturbance time course.d{ }
The orthogonal compliment of                , which is the null space of the 
row span of X, is approximately equal to the (time-domain) signal 
subspace, and the inclusion of        hardly affects the interference removal 
results of ANC.  This is true as long as the low-rank signal assumption 
holds.

I
K d{ }

d{ }

Interpretation of these results



Fig.1: 256-channel CTF sensor array with six 
imaginary reference sensors. The arrows indicate 
the sensor orientations.

Fig.2: Signal time courses and interference overlapped 
sensor time courses.

Fig.3: Reference-sensor time courses and results of 
ANC interference removal.

Fig.4: Reference-sensor time courses and the results 
of ANC interference removal when low frequency 
disturbance was added to the reference sensor data.



Fig.5: Interference overlapped sensor time courses. The 
interference was generated using six independent random activities.

Fig.6: Reference-sensor time courses and the results 
of ANC interference removal when low frequency 
disturbance was added to the reference sensor data.
The interference was generated using six independent 
random activities (Fig. 5).

Fig.7: Reference-sensor time courses and the results of 
ANC interference removal when low frequency 
disturbance was not added to the reference sensor data.
The interference was generated using six independent 
random activities (Fig. 5).
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