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Abstract20

Magnetoencephalography (MEG) data are subject to many sources of environ-21

mental noise, and interference rejection is a necessary step in the processing22

of MEG data. Large amplitude interference caused by sources near brain have23

been both common in clinical settings and difficult to reject. Artifacts from24

vagal nerve stimulators (VNS) are a common and difficult example. In this25

study, we describe a novel MEG interference rejection algorithm called dual sig-26

nal subspace projection (DSSP) and evaluate its performance in clinical MEG27

data from people with epilepsy and implanted VNS. The performance of DSSP28

was evaluated in a retrospective cohort study of patients with epilepsy and VNS29

who had MEG scans for source localization of interictal epileptiform discharges.30

DSSP was applied to the MEG data and we evaluated the success of interfer-31

ence rejection based on visual inspection of the resulting signal and estimation32

of the location and time-course of observed interictal spikes, using an empirical33

Bayesian source reconstruction algorithm (Champagne). Clinical recordings,34

after DSSP processing, became more readable and more epileptic spikes could35

be clearly identified. Localization results significantly improved from those36

achieved before DSSP processing. With Champagne, when DSSP-processed37

data were used, there was a higher chance of successful spike localization, in-38

cluding meaningful estimates of activity time courses. The Champagne results39

using DSSP-processed data differed from those done prior to DSSP. Therefore,40
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DSSP is a valuable novel interference rejection algorithm that can be success-41

fully deployed for the removal of strong artifacts and interferences in MEG.42
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1. Introduction46

From the time of its first introduction, magnetoencephalography (MEG) has47

been used to map functional brain activity noninvasively with good spatial and48

excellent temporal resolution, and thus to offer valuable information for use in49

clinical neurology and basic neuroscience. However, MEG has suffered from an50

important shortcoming: it is prone to contamination from signals other than the51

signals of interest - including inevitable non-biological sources like power lines52

and trains, and biological sources outside of the brain like the heart. Though53

most of this interference is of similar magnitude to brain activity, some of it54

is high amplitude and needs special attention - including artifact from dental55

work, and especially interference from vagal nerve stimulators (VNS), relatively56

common in people with intractable epilepsy, that makes it very difficult for us57

to see and then to model activity of interest [1, 2, 3].58

A variety of methods have been used to minimize artifact in magnetoen-59

cephalographic recordings with varying degrees of success. Averaging responses60

over trials is one method commonly used; this takes advantage of the idea that61

interference in different trials is statistically independent, whereas evoked sig-62

nals are not. However, this method requires a large number of trials, and evoked63

signals must be relatively similar and robust [4]. Filtering is another widely ap-64

plied method, but requires prior knowledge about the interference. Recently,65

data-driven approaches such as principal component analysis (PCA), indepen-66

dent component analysis (ICA) have been popular. However, these methods67

ask users to make subjective choices during application (e.g. choice of thresh-68

old in PCA and of interference component in ICA), and the methods cannot69

exploit pre-/poststimulus partitioning of the data [5, 6]. Joint decorrelation is70

another method commonly supposed to be robust to many types of interference71

problems, but its use requires the design of different bias filters for different72

interference types, and thus to some extent requires prior knowledge of the73

interference [7]. Algorithms based on statistical properties of the interference74

are a class of automated interference algorithm method hailed as both reliable75

and robust. The partitioned factor analysis (PFA) algorithm [1, 8, 9] is imple-76

mented by obtaining a probabilistic model from the data distributions in the77

pre-stimulus period (when the interference exists) and the post-stimulus period78

(when both interference and true signal exist), and then inferring model param-79

eters from these distributions. This method handles most types of interference80

well, but since it relies on the availability of separate measurements that cap-81

ture the statistical properties of the interference, its use is limited to situations82

where such separate measurements are appropriate, and it is not effective for83
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removing overlapped interference [4]. Also, these algorithms may not be effec-84

tive for interference of extremely large magnitude relative to the signals being85

estimated, which is often seen in MEG data in patients with VNS implants.86

Artifacts of significant magnitude are not rare in MEG recordings, and re-87

solving MEG data from distorted recordings is often of great clinical significance.88

Particularly in the case of people with intractable epilepsy who have received89

VNS implants and have continued refractory focal onset seizures, MEG studies90

are an important part of the evaluation for and the planning of resective surgery.91

Without interference rejection, MEG data in many people with VNS implants92

will be completely distorted by significant artifact from the stimulator and the93

lead-wires, making it extremely difficult to see interictal epileptiform activity94

or stimulus evoked responses from primary sensory cortices, thus diminishing95

the usefulness of MEG for these patients and, thereby, their hope for recovery96

[3]. Therefore, developing and testing algorithms for interference rejection in97

MEG data is important, especially new algorithms that specifically address the98

kind of interference that is not well handled by currently available options but99

that is clinically important (e.g. VNS implant interference). Ideally such an100

algorithm would be robust and broadly capable of rejection of as many types of101

interference as possible. Given that many source localization platforms include102

lead fields, it would be ideal to offer a tool that is also based on lead fields.103

Right now options are restricted to specific hardware platforms. For example,104

the temporally extended signal space separation method (tSSS) developed by105

one MEG manufacturer offers a potential solution [10] but this tool has only106

been demonstrated for the Elekta platform and has not been shown for other107

platforms. In contrast, here we show a MEG hardware platform independent108

algorithm for large interference rejection.109

Dual signal subspace projection (DSSP) is a newly proposed algorithm for110

removal of large interference in biomagnetic measurements, and has the poten-111

tial to handle many different kinds of interference [3]. DSSP is based on the112

fact that MEG signal has both spatial and temporal properties. This allows us113

to define a signal subspace in the space domain, and another signal subspace in114

the time domain. We assume that the interference signal is present all the time115

across the whole signal subspace, either inside or outside the spatial-domain116

signal subspace, or both. In contrast, activity from the brain is presumed to117

exist only inside the spatial domain signal subspace. The DSSP algorithm first118

projects the columns of the measured data matrix onto the inside and outside of119

the spatial-domain signal subspace, creating two ’projected’ data matrices. The120

intersection of the row spans of these two ’projected’ matrices is then taken to121

be an estimate of the time-domain interference subspace, and artifact removal122

is carried out on the basis of this estimated interference subspace. Details of the123

DSSP algorithm have been published recently, but the performance of DSSP in124

assisting the identification and localization of epileptiform discharges has not125

been determined. In this paper we evaluate its ability in these arenas, using126

subject specific lead fields and selecting parameters, exploring its capability to127

handle various artifacts as part of processing of clinical datasets. In particular,128

we will evaluate whether it will be helpful to solve the problem of spike detec-129
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tion in patients with VNS implants. We will also test its ability to improve130

source localization of spikes using Champagne, an empirical Bayesian source131

reconstruction algorithm described previously [11].132

2. Method133

2.1. DSSP134

Figure 1: Schematic showing the processing steps of DSSP.

This section introduces the processing steps of DSSP briefly; details of the135

derivation can be found in Appendix A. Figure 1 shows the steps of DSSP.136

Firstly, we input the VNS-artifact overlapped data BM×K which consists of137

signal matrix BS , interference matrix BI and noise matrix Bε; At the same138

time we calculate the Singular Value Decomposition (SVD) of voxel lead field139

matrix and construct the signal-subspace projector P S . The DSSP algorithm140

then applies P S and I − P S to the data matrix B to create two kinds of141

data matrices P SB and (I − P S)B. Next, DSSP estimates the time-domain142

interference subspace KI and constructs the time-domain interference-subspace143

projector ΠI . Lastly, interference removal is achieved and the signal matrix is144

estimated by the time-domain signal space projection B̂S = B(I −ΠI).145
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2.2. Subjects146

We selected 10 epilepsy patients with VNS who underwent a clinical MEG147

study as part of epilepsy surgery evaluation at the University of California, San148

Francisco (UCSF) Biomagnetic Imaging Laboratory (BIL) between November149

24th, 2004 and May 6th, 2016. Prior to MEG, all patients had high-resolution150

epilepsy protocol 3T T1-MRI scans for coregistration of dipoles. Table 1 sum-151

marizes clinical characteristics of these subjects.152

2.3. MEG recordings153

Simultaneous EEG and MEG recordings were performed inside a magnet-154

ically shielded room with a 275 channel whole-head axial gradiometer system155

(VSM MedTech, Port Coquitlam, British Columbia). MEG data were recorded156

from each patient in a passband of 0-75 Hz using a CTF 275 channel whole cor-157

tex MEG helmet while simultaneous twenty-one channel scalp EEG data were158

recorded using a modified international 10-20 system that includes subtempo-159

ral electrodes. Thirty to forty minutes of spontaneous data were obtained in160

intervals of 10-15 min with the patient asleep and awake. The position of the161

patient’s head in the dewar relative to the MEG sensors was determined using162

indicator coils before and after each recording interval to verify adequate sam-163

pling of the entire field. The data were then bandpass filtered offline, initially at164

1-70 Hz. More details of the recording methods have been previously described165

[4]. As artifact commonly distorted MEG recordings from the patients with166

VNS implants, in order to enable for visual analysis and dipole fitting of raw167

data, additional bandpass filters (typically 10-70 Hz or 20-70 Hz) were applied168

as needed during analysis of MEG data. After the application of DSSP for169

artifact removal, all data were bandpass filtered at 1-70 Hz.170

2.4. Epileptic spike analysis171

Spikes were visually identified by a certified EEG technologist (MM) and172

clinical neurophysiologist (JV) and were confirmed by a board-certified clinical173

neurophysiologist and epileptologist (HEK). EEG spikes were identified based174

on the criteria defined by the International Federation of Clinical Neurophysiol-175

ogy (IFCN) [12] and the ACMEGS [13] for EEG epileptiform discharges. MEG176

spikes were chosen for analysis based on duration (< 80ms), morphology, field177

map, and lack of associated artifact. The onset of each spike was marked as the178

rising deflection of the first sharp negativity from the baseline and equivalent179

current dipoles were fit using commercial software provided by CTF Systems180

(VSM MedTech, Port Coquitlam, British Columbia). Only localized spikes with181

a goodness of fit higher than 90% were accepted. Co-registration of dipoles to182

MRI scans was performed using fiducials (nasion and preauricular points) to183

produce magnetic source images (MSI) of dipoles superimposed on anatomic184

images. The fitted spike dipoles were then inspected and validated according to185

their location. Simultaneous EEG during MEG was used to define and confirm186

spikes on MEG, ascertaining that a signal was not an artifact or another phys-187

iologic feature, and also to identify spikes when MEG recordings were heavily188
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Table 1: Clinical characteristics of ten subjects. Note that some patients were referred from outside institutions and thus their
information was limited to that available at the time of the MEG scan

ID Age

Duration

of

Epilepsy

MR abnormality Ictal EEG Interictal EEG PET CT
Presumed

EZ

Interictal

MEG spikes

Num

of

spikes

before

DSSP

Num

of

spikes

after

DSSP

Notes

1 22 18
Left lateral frontal

lobe cortical
dysplasia

Poorly localized;
left frontocentral

region

Left frontocentral
spikes or
polyspikes

Normal but
PET fusion
with MRI

corresponding
hy-

pometabolism

Left
frontal
onset

Left
frontotemporal

0 39

2 25 20

Primary read as
normal, secondary
read as bilateral

posterior pachygyria

Seizures arising
independently

from each
hemisphere;

poorly localized

Independent
bitemporal spikes;

generalized
paroxysmal fast

actvity

Negative
Unknown
to date

Bilateral slow
waves model
bilaterally in

the
suprasylvian
frontal and
infra-sylvian

temporal lobes

44 33

3 44 32 Unremarkable Not available

Right temporal
sharp waves,

generalized spike
and polyspike

discharges

N/A
Unknown
to date

Right temporal,
right frontal

107 168

4 22 20

Encephalomalacia
of the left temporal
lobe, volume loss of
left hippocampus

Left parietal
region

Left TIRDA,
frequent broad
spikes over left

temporo-parietal
region, occasional

left anterior
temporal

predominance

N/A

Left
temporo-
parietal-
occipital

Posterior
medial left

temporal lobe
3 100

Patient had a
posterior
temporal

resection and
a subsequent
additional

occipital lobe
resection 1
year later

with success

5 17
Information

not
available

Left hipopcampal
atrophy, left

hemispheric cortical
dysplasia

Left hemisphere
onset

Intermittent left
frontotemporal

discharges

Hypometabolism
of left temporal

lobe, left
parietal lobe,
left posterior
occiptal lobe

Left hemi-
sphere,
probable

left
temporal

lobe

Left temporal
region

47 143

6 38 17
Left parietal, left

temporal

Independent
bilateral

frontotemporal

Independent right
and left temporal

discharges

Bilateral
temporal hy-
pometabolism

Frontal or
temporal;
laterality
unknown

None 5 14

7 31 25 Unremarkable

Vertex spike
followed by
diffuse fast

activity

Bilateral cen-
tral/paracentral

regions
N/A

Unknown
to date

Right cingulate
gyrus; L>R
perirolandic

regions

35 54

8 37 19

T2/FLAIR
hyperintensity and
atrophy of bilateral

temporal lobes,
L > R

Left
frontotemporal

Left anterior
temporal; also

rare right
temporal spikes

Bilateral
temporal hy-
pometabolism

Left
mesial

temporal

Right temporal
spikes, rare left
temporal spikes

24 32

9 26 Since
young
child

Expected changes
from medial left

frontal lobe
corticectomy;

otherwise
unremarkable

Poorly localized
and lateralized;

some with
preceding left
parasagittal
sharp waves

No interictal N/A

Frontal;
lateraliza-

tion
unclear

but more
likely left

None 43 72

10 28 27
Left parietal
cavernous

malformation

Suggestive of
frontal onset but

poorly
lateralized

Bifrontal sharp
waves, left frontal

spikes

Increased
metabolic

activity in high
left posterior

pariental sulcus

Unknown
to date

Right
suprasylvian
frontal lobe

3 53
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contaminated by VNS artifact (ie when MEG data were significantly distorted,189

spike identification relied heavily on EEG).190

2.5. DSSP performance evaluation191

First, we evaluate the performance of DSSP with another interference re-192

moval method (Adaptive Noise Canceling, or ANC) which makes use of data193

from reference sensors. The reference sensors collect data containing interfer-194

ence but not the signal of interest [14, 15]. For this study, we define the reference195

sensor as the time course with the highest power where noise dominates. ANC196

also uses the idea of subspace projection, but it uses reference sensors to create197

the span of interference, then projects data from each sensor onto the subspace198

orthonormal to the span of interference so that interference specific to that199

sensor is eliminated, leaving sources of interest retained. Here, we compare the200

interference rejection performance of DSSP and of ANC by comparing the power201

spectral density (PSD) in each MEG channel after cleaning.202

After DSSP implementation, cleaned MEG recordings were analyzed as de-203

scribed above (without additional band pass filtering) by three individuals with204

expertise in interictal spike detection (MM, JV, HEK) who were blinded to205

the results of the initial (pre-DSSP) analysis. The results were then compared206

with the original analysis and included quantification of the number of spikes207

identified and localized, and concordance with other clinical information (EEG,208

semiology, MRI lesion if present).209

Finally, DSSP was integrated into a newer source localization pipeline: a210

united Bayesian framework for MEG/EEG source imaging that includes Vari-211

ational Bayes Factor Analysis (VBFA) for noise approximation and a Sparse212

Bayesian Algorithm (Champagne) for source localization [16, 17], to see whether213

localization improved upon the incorporation of DSSP algorithm. For each case214

studied, ten representative spikes seen well on EEG but poorly on MEG in the215

unprocessed recordings were selected for analysis. For each of the spike selec-216

tions, Champagne was run for 300 ms (i.e. using 180 data points) on truncated217

MEG epochs each centered on the selected spike; the required noise estimate218

input for Champagne was obtained by running VBFA on the 1s of MEG preced-219

ing the truncated epoch. The spike source reconstruction map obtained after220

implementing Champagne was used to judge the performance of DSSP: we ob-221

served the activation value of the localized spike activity and the recovered222

activity time-series, and compared these with standard clinical spike mapping223

as described above, as well as with correlative clinical data.224

3. Results225

Figure 2 shows EEG data (a) and MEG data (b) from a patient with226

intractable epilepsy and a VNS implant. It features VNS artifact with partial227

periodicity, low frequency and high amplitude. After DSSP is applied, as shown228

in (c), this periodic feature is greatly diminished and the background looks229

similar to that of most people with epilepsy who do not have VNS. Figure 3230

shows similar data for another patient.231
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Figure 2: A representative case showing the effect of the application of DSSP (Subject 5 from Table 1). (a) EEG epoch
corresponding to MEG epoch (selected channels) (b) Raw MEG recordings (selected channels) (c) DSSP-processed MEG data.
The red line marks a spike not identified in the raw data but seen in the DSSP-processed data, the green line in (a) and (c)
mark another spike. (d) Field maps for MEG (after DSSP) and EEG. (e) Time series for the spike of interest reconstructed
through Champagne. (f) spike localization using Champagne on DSSP-processed data.
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Figure 3: Another representative case (Subject 4 from Table 1) (a) EEG epoch corresponding to MEG epoch (selected channels)
(b) Raw MEG recordings (selected channels) (c) DSSP-processed MEG data. The red line marks a spike not identified in the
raw data but seen in the DSSP-processed data. (d) Field maps for MEG (after DSSP) and EEG. (e) Time series for the spike
of interest reconstructed through Champagne. (f) spike localization using Champagne on DSSP-processed data.
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3.1. DSSP vs ANC232

Figure 4 shows power spectral density of the ten subjects before and after233

artifact removal using DSSP and ANC. As is shown, compared to the raw VNS234

datasets, the PSD decreases after DSSP and ANC, especially for low frequency235

bands from 0 to 30 Hz, while for high frequency bands, the PSD is the same236

as the raw datasets for both DSSP- and ANC-cleaned data. In addition, DSSP237

removes more low frequency power than does ANC.238

Figure 5 shows the PSD of all channels for ten subjects with VNS implanted239

before and after artifact removal by DSSP and ANC. As we can see, compared240

the PSD for raw signal, PSD after DSSP is reduced in all channels; while for data241

processed with ANC, some channels have the same PSD as the raw datasets.242

The PSD for all channels is reduced more by DSSP than by ANC.243

3.2. Visual analysis and source localization244

After the application of the DSSP algorithm to MEG data from people with245

intractable epilepsy and VNS, spikes could be visually identified from MEG246

background at a high rate, both spikes that were well seen on EEG and those247

seen primarily on MEG. Figure 6 shows the average number of spikes that could248

be identified by visual inspection of the MEG and the average number of spikes249

that could be localized by topographical inspection before and after DSSP. As250

is shown, over twice as many spikes could be identified after DSSP (70.8/31.1 =251

2.3), and over four times as many spikes could be localized after DSSP (45.6/11252

= 4.15). The percentage of spikes that could be localized improved from 35.37%253

(11/31.1) before DSSP to 64.41% (45.6/70.8) after DSSP. DSSP improves the254

rate of spike identification and source localization.255

3.3. Champagne algorithm256

Directly running Champagne on MEG recordings that are distorted by VNS257

artifact resulted in localization failure in nine out of the ten cases; either no258

strong activation could be found, or the activity was localized to unusual posi-259

tions (e.g. near or outside of the skull), and the activity time-series recovered260

did not resemble a spike. On the other hand, when DSSP was incorporated prior261

to Champagne, the localization results were markedly improved. As is shown262

in Figure 7, all cases could be localized correctly with DSSP. We performed a263

Chi-Square test comparing numbers of successful and unsuccessful localizations264

before and after DSSP, which give us χ2 = 16.364 and p(χ2 > 16.364) = 0.0001.265

Localizations were clearer and in plausible brain areas, and meaningful spike-like266

time-series were recovered. Figures 2(d) and 3(d) show field maps for MEG267

after DSSP and EEG maps, Figures 2(e) and 3(e) show respective Champagne268

time series for the spike of interest in the two cases previously discussed, and269

Figures 2(f) and 3(f) show source localization. In summary, the chance that270

a given spike from a VNS-contaminated record could be successfully localized271

using the Champagne algorithm greatly increased with DSSP pre-processing.272
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Figure 4: Power Spectral Density (PSD) comparison of DSSP and ANC for 10
subjects.
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Figure 5: Power Spectral Density (PSD) across channels after DSSP and after
ANC for ten subjects.
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Figure 7: Source localization results for all ten subjects using Champagne after DSSP.
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4. Discussion273

In this study, DSSP is evaluated using typical clinical data from people with274

epilepsy and VNS, showing its potential to diminish the influence of interference.275

Compared to classical adaptive noise cancelling (ANC), both DSSP and ANC276

retain the PSD of the MEG signal in high frequency bands, but DSSP reduces277

more PSD over lower frequency bands. Additionally, DSSP processing of MEG278

data enabled better visual identification of spikes, making meaningful the MEG279

recordings that were contaminated and previously of limited value. Finally,280

when integrated with the Champagne source reconstruction algorithm, DSSP281

did help to achieve more reasonable spike localizations and meaningful recovered282

spike activity time series. The successful rejection of VNS artifact using DSSP283

should enable improved treatment (including surgical planning for resection or284

other localized therapies) of people with intractable epilepsy and VNS. Given285

these results, as we gain further experience with DSSP, its potential use in the286

setting of other interference types can also be explored.287

There are several limitations to this study. First, small sample size could288

potentially limit the generalizability of our results. However, we included all289

patients who had VNS implants in our study. Second, the neurophysiologists290

who examined the post DSSP data were blinded to the results of the original291

analysis, there may be some bias due to spike identification in cleaner MEG292

data. Nevertheless, our localization findings suggest that this bias is not se-293

vere. Third, this is a retrospective and non-randomized study. Currently, for294

new cases with VNS artifact, we are undertaking a prospective study applying295

DSSP prior to initial analysis, and results of this prospective study will be pub-296

lished in the future. Finally, although better localization was achieved with the297

addition of DSSP to Champagne, whether this truly improved the accuracy of298

epileptogenic zone mapping is unknown. Most of time the Champagne localiza-299

tion results differed from those obtained using the single equivalent dipole fitting300

method, though the difference mostly lay within one brain functional zone, and301

though the results of both techniques matched the primary clinical diagnosis.302

Additional information about the true epileptogenic zone (e.g. from follow-up303

after resective surgery) will be needed to make such judgment. Therefore, we304

can only conclude that DSSP helps achieve spike mapping, but cannot evalu-305

ate localization accuracy. We are collecting follow-up information from patients306

who went through surgery after MEG recording, and in future this information307

could be used as a gold standard to judge the performance of DSSP.308

5. Conclusion309

In short, DSSP is a novel interference rejection algorithm worth exploration.310

The retrospective clinical study has shown its potential to deal with high am-311

plitude, periodic interference currently not handled well by other algorithms.312

DSSP helped to recover distorted MEG recordings from people with intractable313

epilepsy and VNS implants, making epileptic spike identification easier and spike314

mapping better. The specificity of this improved spike mapping is still unknown.315
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Appendix A. Derivation of DSSP322

Appendix A.1. Data model323

This section briefly describes the DSSP algorithm. A full explanation of324

the algorithm is available in [3]. Also, a detailed explanation of the DSSP325

algorithm in the context of the time-domain signal subspace can be found in326

[18]. Let us define the measurement of the m-th sensor at time t as ym(t). The327

measurement from the whole sensor array is expressed as a column vector y(t):328

y(t) = [y1(t), y2(t), . . . , yM (t)]T , which is called the data vector. Here, M is the329

number of sensors, and the superscript T indicates the matrix transpose. Let330

us assume that a unit-magnitude source exists at r (r = (x, y, z)). When this331

unit-magnitude source is directed in the x, y, and z directions, the outputs of332

the m-th sensor are respectively denoted as lxm(r), lym(r), and lzm(r). Let us333

define an M × 3 matrix L(r) whose m-th row is equal to a 1 × 3 row vector334

[lxm(r), lym(r), lzm(r)]. This matrix L(r), referred to as the lead field matrix,335

represents the sensitivity of the sensor array at r.336

The DSSP algorithm was proposed in order to remove interfering magnetic337

fields overlapped onto signal magnetic fields. The algorithm assumes the data338

model:339

y(t) = yS(t) + yI(t) + ε, (A.1)

where yS(t), (called the signal vector), represents the signal of interest, yI(t),340

(called the interference vector), represents the interference magnetic field, and ε,341

(called the random vector), represents additive sensor noise. We denote the time342

series outputs of a sensor array y(t1), . . . ,y(tK), where K is the total number343

of measured time points. The measured data matrix B is thus defined as: B =344

[y(t1), . . . ,y(tK)]. The signal matrix is defined as BS = [yS(t1), . . . ,yS(tK)],345

and the interference matrix as BI = [yI(t1), . . . ,yI(tK)]. Then, the data model346

in Eq. (A.1) is expressed in a matrix form as:347

B = BS +BI +Bε, (A.2)

where Bε is the noise matrix whose j-th column is equal to the noise vector ε348

at time tj .349
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Appendix A.2. Pseudo-signal subspace projector350

The dual signal space projection (DSSP) algorithm assumes that the inter-351

ference sources are located outside the source space which indicates a region in352

which signal sources can exist. The DSSP algorithm uses the so-called pseudo-353

signal subspace projector, and to derive it, voxels are defined over the source354

space, in which the voxel locations are denoted r1, . . . , rN . The augmented355

leadfield matrix over these voxel locations is defined as356

F = [L(r1), . . . ,L(rN )], (A.3)

and the pseudo-signal subspace ĔS is defined such that357

ĔS = csp(F ), (A.4)

where the notation csp(X) indicates the column space of a matrix X. If the358

voxel interval is sufficiently small and voxel discretization errors are negligible,359

we have the relationship ĔS ⊃ ES where ES indicates the true signal subspace.360

Therefore, a vector contained in the signal subspace is also contained in the361

pseudo-signal subspace.362

Let us derive the orthonormal basis vectors of the pseudo-signal subspace.363

To do so, we compute the singular value decomposition of F :364

F =
M∑

j=1

λjejf
T
j , (A.5)

where ej and f j are left and right singular vectors. In Eq. (A.5), we assume the365

relationship M < N , and the singular values are numbered in decreasing order.366

If the singular values λ1, . . . , λτ are distinctively large and other singular values367

λτ+1, . . . , λM are nearly equal to zero, the leading τ singular vectors e1, . . . , eτ368

form orthonormal basis vectors of the pseudo-signal subspace ĔS . Thus, the369

projector onto ĔS is obtained using370

P S = [e1, . . . , eτ ][e1, . . . , eτ ]
T . (A.6)

Note that (I − P S)yS(t) = (I − P S)BS = 0 holds.371

Appendix A.3. DSSP algorithm372

The DSSP algorithm applies P S and I−P S to the data matrix B to create
two kinds of data matrices:

P SB = BS + P SBI + P SBε, (A.7)

(I − P S)B = (I − P S)BI + (I − P S)Bε. (A.8)

Let us use the notation rsp(X) to indicate the row space of a matrix X . Then,373

the relationships, rsp(P SBI) = KI , rsp((I − P S)BI) = KI , and rsp(BS) =374

KS hold, where KS and KI respectively indicate the time-domain signal and375
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interference subspaces. According to arguments in [18], we can finally derive376

the relationship:377

KI ⊃ rsp(P SB) ∩ rsp((I − P S)B). (A.9)

The equation above shows that the intersection between rsp(P SB) and rsp((I−378

P S)B) forms a subset of the interference subspace KI . The basis vectors of the379

intersection can be derived using the algorithm described in [19]. Once the380

orthonormal basis vectors of the intersection ψ1, . . . ,ψr are obtained, we can381

compute the projector onto the intersection ΠI such that382

ΠI = [ψ1, . . . ,ψr][ψ1, . . . ,ψr]
T . (A.10)

Using thisΠI as the projector onto the (time-domain) interference subspace383

KI , the interference removal is achieved and the signal matrix is estimated by384

the time-domain signal space projection[18], which is385

B̂S = B(I −ΠI) = B(I − [ψ1, . . . ,ψr][ψ1, . . . ,ψr]
T ). (A.11)

The method of removing the interference in a manner described above is called386

dual signal space projection (DSSP). Note that since the basis vectors of the387

intersection, ψ1, . . . ,ψr, span only a subset of the interference subspace KI , this388

method cannot perfectly remove interferences. However, when the intersection389

rsp(P SB)∩ rsp((I −P S)B) is a reasonable approximation of KI , interferences390

can effectively be removed by the DSSP algorithm.391
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