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Abstract9

In this paper, we present a novel hierarchical multiscale Bayesian algorithm
for electromagnetic brain imaging using magnetoencephalography (MEG) and
electroencephalography (EEG). In particular, we present a solution to the source
reconstruction problem for sources that vary in spatial extent. We define sensor
data measurements using a generative probabilistic graphical model that is hier-
archical across spatial scales of brain regions and voxels. We then derive a novel
Bayesian algorithm for probabilistic inference with this graphical model. This
algorithm enables robust reconstruction of sources that have different spatial
extent, from spatially contiguous clusters of dipoles to isolated dipolar sources.
We test new algorithms with several representative benchmarks on both simu-
lated and real brain activities. The source locations and the correct estimation
of source time courses used for the simulated data are chosen to test the per-
formance on challenging source configurations. In simulations, performance of
the novel algorithm shows superiority to several existing benchmark algorithms.
We also demonstrate that the new algorithm is more robust to correlated brain
activity present in real MEG and EEG data and is able to resolve distinct and
functionally relevant brain areas with real MEG and EEG datasets.
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Brain Mapping, Magnetoencephalography, Electroencephalography, Bayesian.11

1. Introduction12

Mapping of the entire brain’s activity in humans is an important undertaking13

in cognitive neuroscience research that seeks to understand neural mechanisms14

of complex human behaviors. It also has clinical applications in patients with15

brain tumors and epilepsy, where functional brain mapping is useful to guide16

neurosurgical planning, navigation, and resection.17

Two techniques currently exist for non-invasive brain mapping of electro-18

physiological activity in humans: electroencephalography (EEG) and magne-19

toencephalography (MEG). MEG and EEG are complementary techniques that20
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measure, respectively, the magnetic field outside the head and the scalp electric21

potentials produced by electrical activity in neural cell assemblies. Since they22

directly measure electrical brain activity from neural ensembles, these methods23

have superior temporal resolution compared to PET or fMRI, thereby enabling24

studies of the dynamics of neural ensembles that occur at typical time scales on25

the order of tens of milliseconds.26

To estimate brain source activity from EEG or MEG data, source recon-27

struction algorithms are necessary, which consists of solving a forward problem28

and an inverse problem. The forward problem computes the scalp potentials and29

external magnetic fields for a specific set of neural current sources for a given30

sensor configuration, brain anatomy, head geometries, and volume conductor31

properties. The inverse problem estimates the parameters of neural sources32

from MEG and EEG sensor data and makes use of the forward problem compu-33

tations. The estimation of spatial locations and timing of brain sources is still34

a challenging problem because it involves solving for unknown brain activity35

across thousands of voxels from the recordings of just a few hundred sensors. In36

general, there are no unique solutions to the inverse problem because there are37

many source configurations that could produce sensor data that can account38

for the sensor observations. This nonuniqueness is referred to as the ill-posed39

nature of the inverse problem. Besides handling the ill-posed nature of EEG or40

MEG imaging, the inverse algorithms have to address the challenge of searching41

for true source signals while minimizing the many sources of noise that inter-42

fere with the true signals. Electrical, thermal and biological noise as well as43

background room interference can be present.44

To overcome these challenges, researchers have proposed many efficient in-45

verse problem algorithms which can broadly be classified into two categories:46

model-based parametric dipole fitting and whole-brain source imaging methods.47

Dipole fitting methods assume that a small set of current dipoles can adequately48

represent an unknown source distribution, which is a direct way to estimate49

source parameters and has properties of high resolution but low accuracy. This50

is because solving for dipole parameters requires nonlinear optimization over51

a high-dimensional parameter space with solutions having great sensitivity to52

initialization due to the high probability of being a local minima. This is espe-53

cially a significant problem when multiple dipoles are considered. Furthermore,54

estimating the number of dipoles remains an intractable problem.55

An alternative approach is whole-brain source imaging methods which do not56

require prior knowledge of the number of sources and can generally avoid the57

non-linear search in the high dimensional parameter space [1, 2, 3, 4]. These58

methods apply voxel discretization over a whole brain volume, and assume a59

source at each voxel and estimate the amplitudes (and orientation) of the sources60

by minimizing a cost function. Imaging methods can be further classified into61

two classes: tomographic reconstruction and spatial scanning techniques. To-62

mographic techniques model the activity at all candidate source locations simul-63

taneously. Tomographic techniques include minimum-norm estimation (MNE)64

[5, 6], dynamic statistical parametric mapping (dSPM) [7], and standardized65

low resolution brain electromagnetic tomography (sLORETA) [8]. Some tomo-66
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graphic techniques promote sparseness in the solution [9, 10], where the majority67

of the candidate locations do not have significant activity [4, 11, 12, 13]. Em-68

pirical evidence shows that a sparse source model can improve the accuracy of69

the localization in a noisy environment [13]. In contrast, spatial scanning tech-70

niques sequentially estimate the time course at every candidate location while71

suppressing the interference from activity at the other candidate source loca-72

tions. Some examples of scanning techniques are minimum-variance adaptive73

beamforming [14, 15, 16, 17] and other variants of beamformers [1].74

Most of the source reconstruction algorithms from the above classes can be75

viewed in Bayesian framework [2]. This perspective is useful because at a high76

level, the prior distribution, implicitly or explicitly imposed, can be used to77

differentiate and compare the various source localization methods. Recently, we78

have developed Champagne, a novel tomographic source reconstruction algo-79

rithm that is derived in an empirical Bayesian and incorporates deep theoret-80

ical ideas about sparse-source recovery from noisy, constrained measurements.81

Champagne improves upon existing methods of source reconstruction in terms82

of reconstruction accuracy, robustness, and computational efficiency [13]. Ex-83

periments with preliminary simulated and real data, presented in [18], show that84

compared to other commonly-used source localization algorithms, Champagne85

is more robust to correlated sources and noisy data. However, when faced with86

more complex brain activity patterns that span multiple spatial scales, such as87

clusters of dipolar sources or mixtures of clusters and isolated dipolar sources,88

there are still no efficient source reconstruction algorithms.89

Here, we present a novel hierarchical multiscale generative model for elec-90

tromagnetic measurements such as MEG and EEG. This algorithm can be con-91

sidered as a hierarchical multiscale extension of the Champagne algorithm. We92

first assume that brain voxels cluster into either anatomically or functionally de-93

fined brain regions or parcels with region-level specific variances. Voxel activity94

is then assumed to have a component arising from regions with additional voxel95

specific variances to account for variations in voxel activity within a region. The96

voxel activity is then assumed to be related to sensor data using standard lead-97

field kernels that are known given the geometry of the sensor measurements and98

the volume conductor model. We then derive Bayesian algorithm for estimating99

voxel and region variances from sensor data. We present a novel algorithm with100

both voxel and region variances, referred to as tree Champagne. We evaluate its101

performance in simulations and real-data and compare with existing benchmark102

algorithms.103

2. Methods104

This section describes the tree Champagne algorithm including the proba-105

bilistic generative model, estimation of the source and region activity, learning106

of hyperparameters, and its relation to other Bayesian inference algorithms.107
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2.1. The probabilistic generative model108

We assume that MEG/EEG data have been collected for evoked or induced109

source activity paradigms, with separate time-windows for evoked or induced110

source activity and for background brain activity including interference from111

biological, environmental sources and sensor noise.112

The generative model for the sensor data is:113

y(t) =
N∑
i=1

lisi(t) + ε (1)

where, y(t) ∈ R
dy×1, is the output data of sensors at time t, dy is the num-114

ber of channels measured, N is the number of voxels under consideration and115

li ∈ R
dy×dc is the lead-field matrix for i-th voxel. The k-th column of li repre-116

sents the signal vector that would be observed at the scalp given a unit current117

source/dipole at the i-th voxel with a fixed orientation in the k-th direction. It is118

common to assume dc = 2 (for MEG) or dc = 3 (for EEG), which allows flexible119

source orientations to be estimated in 2D or 3D space. Multiple methods based120

on the physical properties of the brain and Maxwell’s equations are available121

for the computation of each li [19]. And si(t) ∈ R
dc×1 is the ith voxel intensity122

at time t, which we assume it with dc orientations. Finally, ε is a noise-plus-123

interference term where we assume, for simplicity, that the columns are drawn124

independently from N(0,Σε) with known covariance Σε. Temporal correlations125

can easily be incorporated if desired using a simple transformation outlined in126

[20] or using the spatio-temporal framework introduced in [21]. Here, we assume127

that the noise covariance can be estimated from the baseline and evoked data128

using a Stimulus-Evoked Factor Analysis, SEFA [22] or variational Bayesian129

factor analysis (VBFA) model [23].130

In our hierarchical framework, we divide the brain into R apriori regions (or131

tiles) specified either anatomically or functionally [24]. The j-th region contains132

pj voxels. As a first step, we assume that the division of regions are assumed133

to be non-overlapping, where each voxel belongs to exactly one region, but this134

is not a necessity in the framework. Regional tiling may correspond to a map135

of anatomical or functional areas, or be constructed by, e.g., dividing the voxels136

into regions centered at equally-spaced locations throughout the brain [25]. We137

also assume that each unknown region’s activity zj(t) ∈ R
dc×1 at time t is138

an equivalent dc-dimensional neural current dipole, projecting from the j-th139

region. We then assume that a given voxel’s activity arises from the addition140

of the region’s activity and voxel activity that is independent of the region’s, as141

shown below.142

si(t) = vi(t) + gjzj(t) (2)

In the equation above, vi expresses the component that is intrinsic to the i-143

th voxel and independent from activities of other voxels or the region a voxel144

belongs to. gj is the gain matrix between j-th region distribution and voxel si,145

here we assume it to be 1
pj
, where pj is the number of voxels for j-th region.146

Then, the source data model in Eq. (1) is expressed such that147
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y(t) =
N∑
i=1

livi(t) +
R∑

j=1

(
1

pj

∑
i∈ωj

li

)
zj(t) + ε =

N∑
i=1

livi(t) +
R∑

j=1

l̄jzj(t) + ε (3)

where
∑

i∈ωj
indicates the summation regarding the voxels that belong to the148

jth region. We then denote the mean lead field over the jth region by l̄j :149

l̄j = 1/pj
∑

i∈ωj
li and define an extended (voxel-augumented) lead field matrix150

H such that151

H =
[
l1, . . . , lN , l̄1, . . . , l̄R

]
= [h1, . . . ,hN+R] (4)

where hi = li for i = 1, . . . , N and hi = l̄i−N for i = N +1, . . . , N +R. We also152

define an extended voxel vector, such that153

x(t) =
[
vT1 (t), . . . , v

T
N (t), zT1 (t), . . . , z

T
R(t)

]T
=
[
xT
1 (t), . . . , x

T
N+R(t)

]T (5)

where xi(t) = vi(t) for i = 1, . . . , N and xi(t) = zi−N (t) for i = N+1, . . . , N+R.154

Eq. (3) can then be rewritten as155

y(t) = Hx(t) + ε (6)

The equation above is the data model used for the derivation of new algorithms.156

The data vector y(tk) is denoted yk and the extended voxel vector x(tk) is157

denoted xk for simplicity, tk is the time point at k. We formulate the source re-158

construction problem as the spatio-temporal reconstruction, i.e., the voxel time159

series x1, x2, . . . , xK is reconstructed using the sensor time series y1, y2, . . . , yK .160

We express the whole time series x1, x2, . . . , xK collectively asX ∈ R
(N+R)dc×K ,161

and the whole time series y1, y2, . . . , yK as Y ∈ R
dy×K .162

We then define Υ i as a prior variance dc × dc matrix of xi and define Υ as163

dc(N +R)× dc(N +R) block diagonal matrix expressed as164

Υ =




Υ 1 0 · · · 0
0 Υ 2 · · · 0
...

...
. . .

...
0 0 · · · ΥN+R


 (7)

The prior distribution is expressed as165

p(X|Υ ) =
K∏

k=1

N (xk|0,Υ ) (8)

Using the noise assumption that ε ∼ N (ε|0,Σε), the conditional probability166

p(Y|X) is expressed as167

p(Y|X) =
K∏

k=1

p(yk|xk) =
K∏

k=1

N (yk|Hxk,Σε) (9)

Here, the noise covariance Σε can be estimated using SEFA [22] or VBFA [23]168

and is assumed to be known for simplicity and subsequent considerations.169
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2.2. Estimation of the source and region activity170

To estimate the source distribution X, we first derive the posterior distribu-171

tion p(X|Y), which is given by172

p(X|Y) =
K∏

k=1

p(xk|yk) =
K∏

k=1

N (xk|x̄k,Γ
−1) (10)

where the variance and the mean are obtained as173

Γ
−1 = Υ

−1 +HT
Σ

−1
ε H (11)

174

x̄k = Γ
−1HT

Σ
−1
ε yk (12)

The posterior mean can be written in an alternative way, such that175

x̄k = ΥHT
(
Σε +HΥHT

)−1

yk = ΥHT
Σ

−1
y yk (13)

where176

Σy = Σε +HΥHT (14)

This Σy is called the model data covariance matrix. The solution in Eq. (13)177

can be expressed as178




x1(tk)
x2(tk)

...
xN+R(tk)


 =




Υ 1 0 · · · 0
0 Υ 2 · · · 0
...

...
. . .

...
0 0 · · · ΥN+R







hT
1

hT
2
...

hT
N+R


Σ

−1
y yk (15)

We can then express the source activity in terms of a spatial filter as shown179

below:180

xj(tk) = Υ jh
T
j Σ

−1
y yk (16)

2.3. Learning the hyperparameters Υ181

The Bayesian estimate of xk is given as the voxel posterior mean in Eq. (12)182

or (16). In order to compute xk in Eq. (16), we need to know the hyperparameter183

Υ . The hyperparameter Υ is obtained by maximizing p(Y|Υ ) which is called184

the marginal likelihood [26]. The marginal likelihood p(Y|Υ ) is expressed as185

follows (details of the derivation of this function can be found in Appendix A).186

log p(Y|Υ ) = −
1

K

K∑
k=1

[
(yk −Hxk)

T
Σ

−1
ε (yk −Hxk) +

N+R∑
j=1

xT
j (tk)Υ

−1
j xj(tk)

]

− log |Σy|

(17)
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Although the optimum value of the hyperparameter Υ is obtained by maximiz-187

ing log p(Y|Υ ), maximizing the right-hand side of the equation above is difficult188

due to the inclusion of the last term log |Σy|.189

Since log |Σy| is a concave function with respect to Υ [4], using dc × dc190

auxiliary-parameter matrices, Λj(j = 1, . . . , N +R), the relationship [27] [28],191

N+R∑
j=1

tr
(
Λ

T
j Υ j

)
− Λ0 ≥ log |Σy| (18)

hold where Λ0 is scalar term. Accordingly, we define an auxiliary cost function192

F(Υ ,Λ) such that193

F(Υ ,Λ) = −
1

K

K∑
k=1

[
(yk −Hxk)

T
Σ

−1
ε (yk −Hxk) +

N+R∑
j=1

xT
j (tk)Υ

−1
j xj(tk)

]

−
N+R∑
j=1

tr
(
Λ

T
j Υ j

)
+ Λ0

(19)

where,194

log p(Y|Υ ) ≥ F(Υ ,Λ) (20)

always hold, and increasing F(Υ ,Λ) with respect to Υ should result in increas-195

ing the marginal likelihood log p(Y|Υ ). Therefore, the update value of Υ is196

derived as197

Υ̂ = argmax
Υ

F(Υ ,Λ) (21)

Update rules can then be derived using198

∂

∂Υ j
F(Υ j ,Λ) = −Υ

−1
j

[
1

K

K∑
k=1

xj(tk)x
T
j (tk)

]
Υ

−1
j +Λj = 0 (22)

. Setting the right-hand side to zero, we get the equation,199

Υ jΛjΥ j =

[
1

K

K∑
k=1

xj(tk)x
T
j (tk)

]
(23)

A positive semi-definite matrix that satisfies Eq. (23), can be derived such200

that201

Υ̂ j = Λ
−1/2
j

[
Λ

1/2
j

[
1

K

K∑
k=1

xj(tk)x
T
j (tk)

]
Λ

1/2
j

]1/2
Λ

−1/2
j

(24)

Eq. (24) is the update rule for Υ j .202

The update rule forΛj is derived using a fact that the hyper plane
∑N+R

j=1 tr
(
Λ̂

T

j Υ j

)
−203

Λ0 forms a tightest upper bound of the concave function log |Σy|. Such a hyper-204

plane is found as the plane that is tangential to log |Σy|. Therefore, the update205

equation for Λj is derived as206

Λ̂j =
∂

∂Υ j
log |Σy| = hT

j Σ
−1
y hj (25)
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In summary, the hyperparameter Υ j are estimated by iterating Eq. (16),207

Eq. (24) and Eq. (25). Each iteration is theoretically guaranteed to increase (or208

leave unchanged) the cost function F(Υ j ,Λ). The per-iteration cost is linear209

in the number of N + R so the computational cost is relatively modest (it is210

quadratic in dy, and cubic in dc, but these quantities are relatively small). The211

convergence rate is orders of magnitude faster [4] than Expectation Maximum212

(EM) based algorithms such as those in [20, 29].213

2.4. Algorithm summary214

Tree Champagne is a source reconstruction algorithm based on generative215

model Eq. (1) and is able to combine sparsity (from voxel level inference) and216

smoothness (from regional-level inference) to produce optimally smooth and217

sparse solutions.218

Using the updating rules above, we can calculate the variance of both voxels219

and regions . We denote variance of the voxel intrinsic component as Υ V and220

variance of the regions as ΥR, the relationship between Υ and Υ
V , ΥR is221

Υ =

[
Υ

V 0

0 Υ
R

]
(26)

where222

Υ
V =



Υ 1 · · · 0
...

. . .
...

0 · · · ΥN




Υ
R =



ΥN+1 · · · 0

...
. . .

...
0 · · · ΥN+R




(27)

The variance of i-th voxel is treated as the summation of the variance of the223

i-th voxel’s intrinsic component and variance of the region where the i-th voxel224

belongs to. The time course of tree Champagne can be expressed as:225

ŝ
tree
i (tk) = Υ

tree
i hT

i Σ
−1
y yk (28)

where i-th voxel’s variance Υ
tree
i is expressed as226

Υ
tree
i = Υ

V
i + Υ

R
j (29)

where the i-th voxel belongs to j-th region.227

2.5. Algorithm Initialization228

Initialization of the parameter updates are described here. First, Σε is229

learned from the pre-stimulus period using SEFA [22] or VBFA [23] and fixed.230
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(a) BMN (b) Champagne (c) Tree Champagne

Figure 1: Graphical models for (a) BMN, (b) Champagne, (c) Tree Champagne.
Variables dependent on time are inside dotted box; Variables independent of
time are outside botted box. Variables in circles are unknown and learned from
the model, and Variables in squares are known. N is the number of voxels,
si denotes the ith voxel time course, si,j is the jth voxel’s time course in ith
region.

Initialization for Υ is set by running Bayesian Minimum-Norm (BMN) [2], de-231

scribed below, to determine a whole-brain level variance parameter and the232

variance of all voxels and regions are initialized to this value. The precision and233

the mean of the posterior distribution p(x|y) are computed using Eq. (11) and234

Eq. (16). The hyperparameter Υ is updated using Eq. (24) and with the values235

of Λ updated using Eq. (25) and x obtained earlier. Finally, we calculate the236

variance of both voxels and regions, the time course of each voxel using Eq. (28)237

and Eq. (29) with both voxels and regions taken into consideration.238

2.6. Relationship of tree Champagne to BMN and to Champagne239

BMN [2] and Champagne are two other Bayesian algorithms for source recon-240

struction which have close relation to tree Champagne. The difference among241

the three algorithms are in the generative model, as can be seen in Figure. 1.242

For BMN, voxels in source space have a scalar variance υ. Bayesian estimation243

of this model yields the BMN algorithm which results in smooth widespread244

activity throughout the brain. In contrast to BMN, each voxel in Champagne245

has a different prior variance. Bayesian inference of the Champagne model246

yields very sparse reconstructions [13]. In contrast to both of these algorithms,247

tree Champagne uses a source space that is segmented into different regions248

according to prior anatomy and function. We then assume that each region249

has its own region’s level variance. Additionally, tree Champagne also includes250

an intrinsic variance for each voxel independent of the regional variance. This251

variance partitioning enables it to produce source reconstructions with varying252

spatial extents, as we will show below.253
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3. Performance evaluation on simulation and real data254

This section describes the performance evaluation of tree Champagne under255

different specific complex configurations compared with other four representa-256

tive benchmark source reconstruction algorithms. Then we evaluate the per-257

formance of tree Champagne using real MEG and EEG datasets with different258

tasks.259

3.1. Benchmark source localization algorithms260

Four representative source localization algorithms we chose to compare with261

the performance of tree Champagne are: (1) an adaptive spatial filtering method,262

linearly constrained minimum variance beamformer (referred to as Beamformer)263

[14, 15, 16, 17], (2) a non-adaptive weighted minimum-norm method, standard-264

ized low-resolution tomographic analysis (referred to as sLORETA) [7, 8], and265

two Bayesian based algorithms - (3) Champagne [13] and (4) MSP [30]. In266

simulations, for sLORETA we fix the regularization to be 1e-6 times the max-267

imum eigenvalue of the composite lead-field. We did not find much variation268

in performance when we changed the regularization by 1-2 orders of magni-269

tude. For real MEG data tests, we use BMN [2] for learning the regularization270

parameter which is then used in conjunction with sLORETA - we call this al-271

gorithm of using sLORETA for normalization after BMN as BMN sLORETA.272

We found slight improvements in real data using BMN sLORETA when com-273

pared to sLORETA with a fixed regularization that we used in our simu-274

lations (see Figure. 10). For Champagne, Beamformer and sLORETA, we275

use matlab files (nuts Champagne.m, nuts LCMV Vector Beamformer.m and276

nuts sLORETA.m) from NUTMEG [31]. For MSP, we use the exact implemen-277

tation of MSP as included in standard settings in SPM12 (spm eeg invert.m).278

3.2. Quantifying performance279

In order to evaluate the performance on simulated results, two features are280

quantified: localization accuracy and time course estimation accuracy. We first281

examine whether sources are correctly localized, then measure if the source time282

courses are accurately reconstructed for those source locations. The occurrence283

of both hits rate and false positives are taken into account for the evaluation.284

The free-response ROC (FROC) curve is used as it allows for multiple hits and285

false positives in a single image [32]. The A
′

metric [33] estimates the area286

under the FROC curve for one hit rate (HR) and false positive rate (FR) pair,287

or in our case, for each simulation. If the area under the FROC curve is large,288

then the hit rate is higher compared to the false positive rate.289

A
′

=
HR − FR

2
+

1

2
(30)

where HR is calculated by dividing the number of hits by the true number of290

seeded sources and FR is calculated by dividing the number of false positive291

by the maximum number of false positives for each algorithms. Eq. (30) is292
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a simple way to compute A
′

metric in our prior paper [34]. The correlation293

coefficient between the seed and estimated source time courses for each hit294

is used to determine the accuracy of the time courses. We then average the295

correlation coefficients for all the hits for each simulation run, which is denoted296

as R̄. Finally, we combine these two metrics that capture both the accuracy of297

the location and time courses of the algorithms into a single metric called the298

Aggregate Performance (AP) [18]. It combines the A
′

, R̄, and HR using the299

following equation:300

AP =
1

2
(A

′

+HRR̄) (31)

The HR is used as a weight for R̄ since we only compute the correlation coeffi-301

cient for the sources that are correctly localized. AP ranges from 0 to 1, with302

higher numbers reflecting better performance.303

3.3. MEG simulations304

In this paper, we generate data by simulating dipole sources with fixed ori-305

entation. Damped sinusoidal time courses are created as voxel source time306

activity and we then project the voxel activity to the sensors using the forward307

model generated lead field matrix. The lead field is constructed within the brain308

volume assuming a single-shell spherical model [19] as implemented in SPM12309

(http://www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution of 8196 vox-310

els at approximately 5 mm spacing. The time course is then partitioned into311

pre- and post-stimulus periods. In the pre-stimulus period (180 samples) there312

is only noise plus interfering brainc activity, while in the post-stimulus period313

(300 samples) there is also source activities of interest on top of statistically314

similarity distributed noise plus interfering brain activity. The noise plus inter-315

fering activity consists of actual resting-state sensor recordings collected from316

a human subject presumed to have only spontaneous brain activity and sensor317

noise. The voxel level activity is then projected to the sensors through the lead318

field and the noise/interference is then added to achieve a desired signal to noise319

ratio. The simulated data has 271 sensor recordings. The locations for the ac-320

tive sources are chosen so that there is some minimum distance between sources321

(at least 15 mm) and a minimum distance from the center of the head (at least322

35 mm) [18].323

We could adjust both the signal-to-noise-plus-interference ratio (SNIR) and324

the correlations between the different voxel time courses (inter-dipole αinter) to325

examine the algorithm performance on unknown correlated sources and fixed326

orientation. In this paper, SNIR and correlation between sources are defined327

the same way as is shown in our prior work [18].328

Similar to our prior work, we picked difficult configurations that we have329

tested for Champagne [18]. Additionally, in this paper, we extend our tests to330

sources with extended spatial extent, i.e. source clusters and regions with more331

complex configurations [35]. A voxel source is the point dipolar source and a332

cluster source is defined as sources with several closely located dipolar sources. A333
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region is set a priori using atlases by dividing the whole brain into regions defined334

either anatomically or functionally, such as the Automated Anatomical Labeling335

(AAL) [24]. We expand configurations with correlations between clusters (inter-336

clusters, βinter) which define the voxel time courses correlation from different337

cluster and correlations in clusters (intra-cluster, βintra) which define the voxel338

time courses correlation among the same cluster. We also tested the effect of339

activity with both clusters and point sources. In summary, the configurations340

we tested are as follows:341

1 Correlation within cluster - We examine the ability to reconstruct clusters342

with increasing correlation of sources from the same cluster. We seed 5343

clusters with 20 sources for each cluster. The correlation of sources from344

the same cluster is set as 0.1, 0.3, 0.5, 0.7 and 0.9 - in this situation we345

set the correlation between clusters as 0.25.346

2 Correlation between clusters - We examine the influence of correlation347

between clusters for the novel algorithm. We seeded 5 clusters with 20348

sources per cluster. We set the correlation between clusters as 0.1, 0.3,349

0.5, 0.7 and 0.9 - the source time courses within each cluster is set to have350

an intra-cluster correlation coefficient of 0.5.351

3 Number of clusters - We test the ability to localize distributed clusters352

by simulating different numbers of clusters. We seed 1, 4, 7, 10, 13, 16353

clusters with 20 sources for each cluster. These clusters correspond to 20,354

80, 140, 200, 260 and 320 voxels having nonzero activity. The placement355

of the cluster center is seeded randomly and cluster consists of sources356

seeded within the 19 nearest neighboring voxels.357

4 Effect of clusters’ size - We assess the robustness to localize distributed358

sources with different cluster sizes. We seed 5 clusters with 10, 16, 22, 28,359

34 and 40 active dipoles per cluster, which correspond to 50, 80, 110, 140,360

170 and 200 active voxels.361

5 Number of regions - Since our novel algorithm is based on the distribution362

of voxels into regions, we also test the influence of different sizes of the363

region divisions. Here, we set the number of regions as 8, 9, 32, 95,364

108, 116, 285 and 291 to evaluate performance of the tree Champagne365

algorithm. For these simulations, we fix the activity as arising from 5366

clusters with 20 sources for each cluster.367

6 Mixed conditions (clusters and sources) - We extend the previous cluster368

analysis experiments to investigate the effect of having both cluster and369

dipole activity. We choose to set the number of clusters from 1, 4, 7, 11,370

14 to 17 with additional activity from 5 dipoles. Subsequently, we set the371

number of clusters as 5 and vary the number of dipoles from 1, 4, 7, 10,372

13, 16 to 19.373
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If not indicated otherwise, each of the experiments is conducted with the374

following settings: the source time courses within each cluster have an intra-375

cluster correlation coefficient of βintra = 0.5 and an inter-dipole correlation376

coefficient of βinter = 0.25. We make the correlations within the clusters higher377

than between clusters because nearby voxels are more plausibly correlated than378

voxels at a distance. For clusters, we are both interested in whether a cluster is379

localized and whether the extent of cluster is accurately reconstructed. To assess380

the localization of clusters, we use the A
′

metric. The A
′

metric is calculated381

for clusters by testing if there is a local peak within the known extent of the382

cluster. To assess the accuracy of the extent of clusters, we calculate the fraction383

of seeded voxels with power in or above 10th percentile of all voxels. At the384

same time, the power of localized peaks should be at least 0.1 percentile of the385

maximum power.386

The results obtained using simulated data are averaged over 50 simulations387

for each of six configurations with SNIR=0 or 10 dB and we plot these averaged388

results with standard error bars. We show the plots of mean AP , our Aggregate389

Performance metric. We also show examples of localization results from single390

simulations, which complement our aggregate results.391

3.4. EEG simulations392

We also test the novel algorithm on simulated EEG data using a scalar lead-393

field computed for a three-shell spherical model in SPM12 (http://www.fil.ion.ucl.ac.uk/spm)394

at the default resolution resulting in 8196 voxels at approximately 5 mm spac-395

ing. The simulated EEG data has 120 sensor recordings. With this lead-field,396

EEG data is simulated in the same way as the MEG data, as described above.397

We repeat the detection of multiple clusters and mixed conditions (clusters and398

sources) experiments for EEG simulations.399

3.5. Real datasets400

All the MEG data here was acquired in the Biomagnetic Imaging Laboratory401

at University of California, San Francisco (UCSF) with a CTF Omega 2000402

whole-head MEG system from VSM MedTech (Coquitlam, BC, Canada) with403

1200 Hz sampling rate. The lead field for each subject is calculated in NUTMEG404

[31] using a single-sphere head model (two spherical orientation lead fields) and405

an 8 mm voxel grid. Each column is normalized to have a norm of unity. The406

data is digitally filtered from 1 to 160 Hz to remove artifacts and the DC offset407

is removed.408

We ran tree Champagne and all of the benchmark algorithms on five real409

MEG data sets: 1. Somatosensory Evoked Fields (SEF); 2. Auditory Evoked410

Fields (AEF); 3. Audio-Visual Evoked fields; 4. Face-processing task; 5. Inter-411

ictal spike data from patients with epilepsy spikes. The first four data sets have412

been reported in our prior publications using the Champagne algorithm, and413

details about these datasets can be found in [18, 13]. Novel data included in414

this paper are interictal spikes from seven patients with epilepsy. These spikes415

were identified by trained MEG technologists in the Biomagnetic Imaging Lab-416

oratory, and the peak time-point was localized using dipole fitting method. For417
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Champagne and tree Champagne, we choose a pre-spike window from -350 ms418

to -250 ms as a baseline control period and the post-spikes window is from -50419

ms to 50 ms where the spikes time is at 0 ms time point.420

The EEG data (128-channel ActiveTwo system) was downloaded from the421

SPM website (http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and the lead422

field was calculated in SPM8 using a three-shell spherical model at the coarse423

resolution. The EEG data paradigm involves randomized presentation of at424

least 86 faces and 86 scrambled faces, here we subtract the averaged scrambled-425

faces data to the averaged faces data to study the differential response to faces426

versus scrambled faces [36], and the power is plotted on a 3-D brain. The EEG427

data has been reported in our prior publication using the Champagne algorithm,428

and details about our analyses of this dataset can be found in [18].429

4. Results430

4.1. MEG simulations431

Figure 2 shows a representative example of localization results for an MEG432

simulation with 3 clusters at SNIR = 10 dB, compared with the ground truth.433

Champagne can find all three clusters but it estimates activity that is more fo-434

cal than the true spatial extent of the sources. Tree Champagne is also able435

to localize three clusters with estimates that are more spatially distributed436

than Champagne. Beamformer is unable to find the three clusters correctly.437

sLORETA can find all three clusters correctly but produces blurred and diffuse438

solutions. In contrast, MSP can find all three clusters but reconstructions are439

smoother than ground truth and also estimates additional sources that are not440

present in the simulations.441

The performance for a second special case where 3 regions of the model are442

specified to be active is shown in Figure 3. Only tree Champagne is able to re-443

construct the correct active region, showing the extended activity corresponding444

to each region. Champagne localizes the active region but treats the regions’445

activity as if they are arising from several point sources. In contrast, sLORETA,446

Beamformer and MSP do not accurately estimate the regions’ active and show447

blurred and inaccurate reconstructions.448

Figure 4 shows an example of the steps that go into the aggregate perfor-449

mance metric calculation. With the increase of correlation in clusters, we first450

calculate Hit Rate (subplot A) and False Rate (subplot B) using the method451

from our prior work [18]. Then, the correlation between hit sources and seeded452

time series is obtained as shown in subplot C. At last, we calculate the A
′

matric453

and Aggregate performance using Eqs. (30) and (31). Aggregate performance454

across 50 simulations for each of 6 configurations is reported. For subsequent455

performance evaluation figures we only show the AP metric.456

4.1.1. Influence of the Correlation within each Cluster457

The sensitivity to performance as a result of increasing the correlation within458

each cluster on both 10 dB and 0 dB is presented at the first row of Figure 5.459
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Figure 2: Example of the localization results for simulated MEG data with 3
clusters at SNIR=10. The activity power is normalized by the lead-field value
at each voxel. The ground truth is shown for comparison.15



Figure 3: Example of the localization results for simulated MEG data with 3
regions active at 10 dB. The activity power is normalized by the lead-field value
at each voxel. The ground truth is shown for comparison.
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Figure 4: Example of the Aggregate Performance metric calculation with in-
creasing correlation in clusters from 0.1 to 1 at 10 dB for 50 simulations: (A)
Averaged Hit Rate for all algorithms; (B) Averaged False Rate for all algo-
rithms; (C) Averaged correlations for all hit sources; (D) Averaged Aggregate
Performance scores for all algorithms.
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Figure 5: Simulation results of Aggregate Performance with four different con-
figurations at 10 dB and 0 dB: (A) and (B) show results for increasing dipoles
time courses correlation from the same cluster; (C) and (D) show results for
increasing correlation between clusters; (E) and (F) show results for increasing
the number of clusters; (G) and (H) show results for variations in the sizes of
the clusters.
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From the AP plot, for both SNIR = 10 dB and SNIR = 0 dB, tree Champagne460

outperforms all benchmarks. Champagne is not as good as tree Champagne461

but is much better than other benchmarks. The benchmark algorithms perform462

somewhat similarly for these simulations, but their performance is not as good463

as tree Chamagne and Champagne. Nevertheless, increasing the correlation in464

each cluster also improves the performance of all algorithms.465

4.1.2. Influence of the Correlation between Clusters466

The second row of Figure 5 shows the influence of increasing the correlation467

between clusters on algorithm performances. Increasing the correlation between468

clusters has little influence on the performance of all algorithms at both 10 dB469

and 0 dB. Based on the AP metric, it is clear that tree Champagne outperforms470

all benchmarks. Although Champagne is not as good as tree Champagne, but471

it is the best among all benchmarks when compared to Beamformer, sLORETA472

and MSP.473

4.1.3. Influence of the number of clusters474

In the third row of Figure 5, we plot the number of clusters versus AP metric475

at SNIR levels of 10 dB and 0 dB. All algorithms have the same trend at both476

10 dB and 0 dB, with the increase number of clusters, the AP score decreases.477

Again, tree Champagne outperforms all benchmark algorithms. Champagne is478

not as good as tree Champagne but better than others. For benchmarks, at 10479

dB, sLORETA shows higher AP score than Beamformer and MSP. While at 0480

dB, all benchmarks performs at a similar level when the number of clusters is481

more than 4.482

4.1.4. Effect of Clusters’ size483

The results of all methods at both 10 dB and 0 dB in response to increasing484

clusters’ size are presented in the last row of Figure 5. Performances of all485

algorithms do not show much change when the clusters’ size increases. From486

the AP plot, tree Champagne outperforms all benchmarks. Again, Champagne487

is very close to tree Champagne with superior performance when compared to488

Beamformer, sLORETA and MSP.489

4.1.5. Effects of Increasing the Number of Regions in the Generative Model490

The first row of Figure 6 shows the influence to localization methods by491

increasing the number of regions. The whole source space is segmented into492

different size regions and tested at 10 dB and 0 dB. Although this should only493

influence the performance of tree Champagne algorithm, we also show perfor-494

mance for the benchmarks for these specific simulation data instantiations us-495

ing the same performance metrics. The intra-cluster correlation is at 0.5 and496

the inter-clusters correlation is 0.25. The results are averaged over 50 simu-497

lations each with 5 clusters seeded with 20 sources for each cluster, and the498

error bars show the standard error. As we can see in the AP metric, when499

increasing the number of the regions, despite some changes in the performance500

of tree Champagne, it is superior to the benchmark algorithms.501
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Figure 6: Aggregate Performance with three different configurations: (A) and
(B) show results for increasing the brain’s regions at 10 dB and 0 dB; (C) and
(D) show the performance of all algorithms with fixed 5 dipoles while increasing
the number of clusters at 10 dB and 0 dB; (E) and (F) show results with fixed
5 clusters but increasing the number of dipoles at 10 dB and 0 dB.
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4.1.6. Performance for Mixed Source Configurations502

A single representative simulation experiment with 2 clusters and 2 dipoles at503

10 dB is presented in Figure 7, where the ground truth is shown on the first row504

for comparison. Champagne and tree Champagne can localize all clusters and505

the dipoles. Beamformer, sLORETA and MSP can localize almost all activities506

but with very diffuse reconstructions and some false positive activity estimates.507

In order to evaluate the performance of source localization algorithms for508

configuration with both clusters and dipoles, we first fix the number of dipoles509

as 5 and increase the number of clusters, then we fix the number of clusters as 5510

and increase the number of dipoles. The final results are plotted in the second511

and third rows of Figure 6. As we can see in the AP value with fixed number512

of dipoles and increase number of clusters, the performance of all algorithms513

decreases. Tree Champagne outperforms the benchmarks at both 10 dB and 0514

dB. Champagne shows better performance than other benchmarks at 10 dB but515

is close to others at 0 dB. We then fix the number of clusters and increase the516

number of dipoles, and the performance of all algorithms decline as the number517

of dipoles increases. Tree Champagne still produces the highest scores among518

all source localization algorithms both at 10 dB and 0 dB.519

4.2. EEG simulations520

In Figure 8 we show EEG simulation results at 10 dB. According to our521

tests, the performance of all algorithms have a similar trend with SNIR equals522

to 10 dB or 0 dB. The left column shows the results of A Prime Metric and the523

right column is the Aggregate Performance score. Across both the A Prime and524

Aggregate Performance metrics, tree Champagne outperforms all benchmarks525

for all three different configurations.526

In simulations, according to the evaluation function used in the paper, the527

performance of tree Champagne is much better than Champagne, especially for528

clusters localization. Tree Champagne is also more accurate than Champagne529

at estimating the spatial extent of cluster sources. As is shown in Figure 9,530

when we compare the radius of estimated size of clusters for Champagne and531

tree Champagne, the latter is better at estimating the spatial extent of the532

cluster.533

4.3. Summary for simulations534

As we can see from the simulation results and analysis above, both at 10 dB535

or 0 dB, tree Champagne outperforms all the benchmark source reconstruction536

algorithms. Next, we extend the evaluation of the performance using real MEG537

and EEG data.538

4.4. Results of real data539

This section shows the evaluation for our algorithms using real MEG and540

EEG data, which contains five different MEG datasets and one EEG dataset:541

Somatosensory Evoked Field Paradigm, Auditory Evoked Field, Audio-Visual542

task, Face-processing task for MEG, Epileptic spikes data for MEG and Face-543

Processing task for EEG.544
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Figure 7: Example of the localization results for 2 clusters and 2 dipoles at
SNIR = 10 dB. The activity power is normalized by the lead-field value at each
voxel. The ground truth is shown for comparison.

22



0 5 10 15

(A) Num of Clusters

0.4

0.6

0.8

A
 P

rim
e 

M
et

ric

SNIR = 10dB

0 5 10 15

(B) Num of Clusters

0.2

0.3

0.4

0.5

0.6

A
gg

re
ga

te
 P

er
fo

rm
an

ce

SNIR = 10dB

0 5 10 15 20

(C) Num of Dipoles with 5 Clusters

0.2

0.3

0.4

0.5

0.6

A
 P

rim
e 

M
et

ric

0 5 10 15 20

(D) Num of Dipoles with 5 Clusters

0.1

0.2

0.3

0.4

0.5

A
gg

re
ga

te
 P

er
fo

rm
an

ce

0 5 10 15

(E) Num of clusters with 5 Dipoles

0.2

0.3

0.4

0.5

0.6

A
 P

rim
e 

M
et

ric

0 5 10 15

(F) Num of clusters with 5 Dipoles

0.1

0.2

0.3

0.4

0.5

A
gg

re
ga

te
 P

er
fo

rm
an

ce

Beamformer sLORETA Champagne Tree-Champ MSP

Figure 8: EEG simulation results of the A Prime Metric (left column) and
Aggregate Performance (right column) with three different configurations at 10
dB: (A) and (B) show results for increasing number of clusters; (C) and (D)
show results with fixed 5 clusters and increasing the number of dipoles; (E) and
(F) show results with fixed 5 dipoles while increasing the number of clusters.
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4.4.1. Somatosensory Evoked Field Paradigm545

Figure 10: Sensory Evoked Field localization results. The activity power is
normalized by the lead-field value at each voxel. All six algorithms localize to
somatosensory cortical areas, where Champagne and tree Champagne are the
most focal. BMN sLORETA also performs well on the localization. Here we
set the threshold for tree Champagne and Champagne much lower than other
benchmarks.

Figure 10 shows the results of the somatosensory evoked field response due to546

somatosensory stimuli presented to a subject’s right index finger, average derived547

from a total of 240 trials. A peak is typically seen∼50 ms after stimulation in the548

contralateral (in this case, the left) somatosensory cortical area for the hand, i.e.,549

dorsal region of the postcentral gyrus. MSP, Champagne and tree Champagne550

can localize this activation to the correct area of somatosensory cortex with focal551

reconstructions. Here, we show performance in three benchmarks - Beamformer,552

sLORETA with a fixed regularization, and BMN sLORETA. While benchmarks553

are also able to localize somatosensory cortex, these reconstructions are more554

diffuse especially for sLORETA with a fixed regularization.555

4.4.2. Auditory Evoked Fields556

The localization results for AEF data from three subjects are shown in fig-557

ure 11. The power of at each voxel in a 50-75 ms window around M100 peak558

is plotted for every algorithm. Both Champagne and tree Champagne are able559
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Figure 11: Auditory Evoked Field results for three subjects. The activity power
is normalized by the lead-field value at each voxel. The results from both Cham-
pagne and tree Champagne are shown in the last two columns, which outperform
the other benchmark algorithms shown in the first to three columns.

to consistently localize bilateral auditory activity for all subjects (shown in the560

last two columns in Figure 11). The activity is in Heschl’s gyrus, which is the561

location of primary auditory cortex. Champagne and tree Champagne perform562

similarly for all subjects. Beamformer can find the two auditory cortices only563

in one subject, whereas for the rest of the subjects the activations are mostly564

biased towards the centra of the head; This suggests that the correlation of bi-565

lateral auditory cortical activity really impacts the performance of Beamformer.566

BMN sLORETA is able to find the auditory activity for almost every subject,567

but the results are diffuse and with additional spurious activities (not seen on568

the slices shown). MSP can localize bilateral auditory activity but with some569

location bias and more diffuse activation.570

4.4.3. Audio-Visual Evoked Fields571

Figure 12 shows results of the audio-visual evoked fields for tree Champagne.572

In subplot (A) and (B) we show the brain activations associated with the audi-573

tory stimulus. Tree Champagne is able to localize bilateral auditory activity in574

Heschl’s gyrus in the window around the M100 peak, shown in the first row of575

Figure 12. The two auditory sources have the maximum power in the window576

around the M100 peak. We show the early visual response in the second row of577

Figure 12. Tree Champagne is able to localize a source in the medial, occipital578

gyrus with a peak around 150 ms. We plot the power in the window around this579

peak and the time course of the source marked with the cross hairs. Our novel580

algorithm can localize a later visual response with a time course that has power581

extending past 150 ms, which is similar to the results that we have obtained582

with Champagne [18].583
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Figure 12: Audio-Visual data localization results from tree Champagne. The ac-
tivity power is normalized by the lead-field value at each voxel. Tree Champagne
is able to localize a bilateral auditory response at 100 ms after the simultaneous
presentation of tones and a visual stimulus. For bilateral auditory activity, the
results of locations and time courses are shown in (A), (B). Tree Champagne can
localize an early visual response at 150 ms after the simultaneous presentation
of tones and visual stimulus shown in (C) and (D).

4.4.4. Face-processing task: MEG584

Localization of Face-processing task (MEG) in response to faces are shown585

in Figure 13. We see an early visual cortical response to the presentation586

of the face visual stimulus in medial occipital cortex and later visual cortical587

response more lateral to the early response shown in the first row of Figure 13.588

Subsequently, tree Champagne is able to localize the bilateral activation in the589

fusiform gyrus with peaks around 170 ms [36, 37]. Performance of benchmarks590

algorithms on this dataset can be found in [18].591

4.4.5. Face-Processing task: EEG592

In Figure. 14, we present the results from using novel algorithm and bench-593

marks on the face-processing task EEG data set. Figure 14 shows the average594

power, M100 peak power and M170 peak power at different rows separately. We595

see that tree Champagne is able to localize the brain activity with sparse peaks596

at visual areas and fusiform gyrus. However the benchmarks produce the brain597

activity with either wrong location or blurred solutions. Even though the thresh-598

old we use is 1% of the maximum activation of the image for tree Chamapgne599

and 10% of the maximum activation of the image for benchmarks, our novel600

algorithm gives us more sparse and accurate results.601

4.4.6. Epilepsy Spikes602

The localization results for epilepsy spikes data from seven patients are603

shown in Figure 15. The best time point dipole fitting for each spike is shown604

in the left-most column for reference. As we can see, both Champagne and605
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Figure 13: Face-processing task (MEG) localization results for tree Champagne.
The activity power is normalized by the lead-field value at each voxel.
Tree Champagne can localize an early visual response around 100 ms after the
presentation of a face stimulus, results with time courses shown in subplot (A).
A later visual response around 200 ms after the presentation of a face stimulus
are shown in subplot (B). The novel algorithm can localize the bilateral acti-
vation in fusiform gyrus that is thought to be in FFA, shown in (C) and (D).
The peak for the brain activity is around 170 ms after the presentation of a
face stimulus, and the time courses are shown next to brain activity figures in
subplots (C) and (D).

tree Champagne are able to localize almost all spikes for all subjects (shown in606

the forth to fifth columns in Figure 15). Champagne and tree Champagne per-607

form similarly for all subjects. For other benchmark algorithms, Beamformer608

can localize the spike for each subject, but localization results are only reason-609

able for subject 5 since the rest are either diffuse or have many spurious activa-610

tions which are stronger than the true location of the spikes. BMN sLORETA611

performs better than Beamformer, but shows more diffuse results when com-612

pared to Champagne and tree Champagne. Since default MSP settings were613

optimized for scalar lead-fields but these data included vector lead-fields, we614

did not run MSP on these data.615

5. Discussion616

This paper derives a novel hierarchical multiple spatial scale Bayesian al-617

gorithm, tree Champagne, for electromagnetic brain imaging using magnetoen-618

cephalography (MEG) and electroencephalography (EEG) with comparisons to619

existing benchmark algorithms. The novel algorithm is based on a principled620

cost function that maximizes the marginal likelihood of the data with fast,621

convergent update rules. The multiscale formulation enables tree Champagne622

to optimally combine smoothness (from regional-level inference) and sparsity623

(from voxel level inference). Results show significant theoretical and empirical624
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Figure 14: Results for face processing (EEG) from novel algorithm and bench-
marks. The first row is the average power mapping from 0 ms to 400 ms, the sec-
ond and third rows are for peak power activity at 100 ms and 170 ms separately.
Thresholds is 1% of the maximum activation of the image for tree Chamapgne
and 10% of the maximum activation of the image for benchmarks. The activity
power is normalized by the lead-field value at each voxel.
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Figure 15: Epilepsy Spikes results for 7 subjects. The results of best time point
dipole fitting are shown in the left-most column, the results of benchmarks are
shown from second to forth columns, the novel algorithm’s results are shown
in the last column. The activity power is normalized by the lead-field value at
each voxel.
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advantages over many existing methods. The algorithm readily handles multi-625

ple correlated sources and is appropriate for sources that have variable spatial626

extent ranging from isolated dipoles and extended clusters of dipoles, situations627

that commonly arise even with simple cognitive neuroscience tasks.628

The experiments with simulated data exemplify that tree Champagne pro-629

vides robust localization and time course estimation with complex source con-630

figurations and noisy data for both MEG and EEG simulations with corre-631

lated sensor data. Tree Champagne outperforms existing benchmarks with632

highly correlated sources even at high levels of interference at 0 dB. We also633

found that with increasing of the number of clusters and the size of clusters,634

tree Champagne performs much better than the benchmark algorithms. No-635

tably, tree Champagne performance better than Champagne since tree Champagne636

shows more extended activity for clusters. For more complex configurations with637

simultaneous clusters and dipoles activity for both MEG and EEG, tree Champagne638

is also able to accurately localize the simulated activity and significantly out-639

performs benchmark algorithms.640

Experiments with real data highlight the source localization abilities of the641

novel algorithm. It is difficult to evaluate localization accuracy with real data642

since the ground truth is not known. For this reason, we have chosen real data643

sets that have well-established patterns of brain activity; AEF, audio-visual,644

and face-processing data. For all these real data, the tree Champagne algorithm645

performs superiorly compared to benchmarks and improves upon our prior work646

on Champagne. Additionally, here we examine a novel dataset of interictal647

spikes from patients with intractable epilepsy. For these data, tree Champagne648

is able to successfully localize all spikes for all subjects.649

In this paper, the novel algorithm mainly models and addresses issues re-650

lated to incorporating priors for spatial-smoothness of sources activity. We651

extend our prior framework of Champagne to include this spatial smoothness652

using regional variances. Other researchers have taken different approaches for653

incorporating priors on spatial-smoothness for sources reconstruction. Knösche654

[38] has proposed a functional similarity as priors for the reconstruction of655

distributed source current densities from EEG: patchLORETA1, which uses656

both topological neighborhood and prior information to define smoothness and657

patchLORETA2, which neglects topological neighborhood [39]. Alternatively,658

fMRI-Informed Regional Estimation (FIRE) [40] utilizes information from fMRI659

in EEG/MEG source reconstruction which takes advantage of the spatial align-660

ment between the neural and vascular activities, while allowing for substantial661

differences in their dynamics.662

The region-based variance model in tree Champagne is different from other663

multiscale or hierarchical approaches in several ways [40, 41, 42, 43]. First,664

algorithms like the Multiple Sparse Priors (MSP) also evaluated here [20] impose665

spatial kernel smoothness across voxels based on the adjacency matrix and only666

include regional level variances with no voxel-level variances. Second, in contrast667

to these algorithms, we do not use variational approximations to factorize the668

posterior variances at the region-level and voxel-levels, which allows for the669

posterior voxel and regional variances to be correlated. Finally, we do not670
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use greedy algorithms like those proposed in Babadi et al. and Friston et al.671

[43, 41], which are highly sensitive to initialization and have the possibility of672

sub-optimal solutions. In contrast to using these update rules that are based673

on approximate likelihood maximization using restricted maximum likelihood674

based, cost functions that have slower convergence rates, tree Champagne uses675

faster update rules based on convex-bounds on true marginal likelihood of the676

data[4]. Given the similarities between the proposed generative model, MSP677

and related hierarchical algorithms, inclusion of proposed implementation ideas678

into these frameworks may minimize observed differences in results.679

Notably, however, the algorithms described in this paper do not incorpo-680

rate temporal smoothness constraints and this represents the future directions681

for our work. Various forms of temporal prior information or constraints can682

be unified within the framework of covariance component estimation. We are683

currently investigating the use of temporal-smoothness priors in the form of684

basis functions [44] and in the form of autoregressive smoothness priors, which685

also model spatiotemporal correlations in the background noise and can poten-686

tially improve performance. The best example of such an effort is the Bayesian687

Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES) [45]688

algorithm, which is built upon a Bayesian framework that determines the spatio-689

temporal smoothness of source activities in a fully data-driven fashion is based690

on a Markov Random Field (MRF), which can precisely capture local cortical691

interactions, employed to characterize the spatial smoothness of source activ-692

ities, and importantly the temporal dynamics of which are modeled by a set693

of temporal basis functions (TBFs). Jean Daunizeau et al.[42] also introduced694

a Bayesian framework to incorporate distinct temporal and spatial constraints695

on the solution and to estimate both parameters and hyperparameters of the696

model. A full multivariate autoregressive (MAR) model formulates directed697

interactions (i.e., effective connectivity) between sources. The observation pro-698

cess of MEG data, the source dynamics, and a series of the priors are combined699

into a Bayesian framework using a state-space representation. By formulating700

the source dynamics in the context of MEG source reconstruction, and unifying701

the estimations of source amplitudes and interactions, the effective connectivity702

without requiring the selection of regions of interest can be identified [39]. We703

derive inspiration for our future work from these approaches. Our next steps will704

focus on incorporating temporal-smoothness and effective connectivity prior on705

our novel algorithms, which hold promise for improving upon an already robust706

source localization algorithm.707
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Appendix A. Derivation of the marginal likelihood function716

Here, we derive the expression for the marginal likelihood function shown in717

Eq. (17). We make the use of the form [2] (pp.244)718

log p(Y|Υ ) = Ep(X|Y)

[
log p(Y,X|Υ )

p(X|Y)

]
=

∫
dXp(X|Y) log[

p(Y,X|Υ )

p(X|Y)
]

= Ep(X|Y) [log p(Y|X)] + Ep(X|Y) [log p(X|Υ )] +H (p(X|Y))

(A.1)

Substitution of equations Eq. (8), Eq. (9) and Eq. (10) into Eq. (A.1) results719

in the relationship720

log p(Y|Υ ) = log |Σε| − Ep(X|Y)

[∑K
k=1(yk −Hxk)

T
Σ

−1
ε (yk −Hxk)

]

+ log |Υ | − Ep(X|Y)

[∑K
k=1 x

T
k Υxk

]
− log |Γ |

= −
1

K

K∑
k=1

[
(yk −Hxk)

T
Σ

−1
ε (yk −Hxk) +

N+R∑
j=1

xTj (tk)Υ
−1
j xj(tk)

]

+ log

[
|Σε||Υ |

|Γ |

]

(A.2)

using equation 4.28 from book [2] (pp.55), we get equation Eq. (17).721
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[5] M. S. Hämäläinen and R. J. Ilmoniemi. Interpreting measured magnetic732

fields of the brain: Estimates of current distributions. Technical Report733

TKK-F-A559, Helsinki University of Technology, 1984.734

33
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