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Magnetoencephalography (MEG) is increasingly used for presurgical planning in people

with medically refractory focal epilepsy. Localization of interictal epileptiform activity, a

surrogate for the seizure onset zone whose removal may prevent seizures, is challenging

and depends on the use of multiple complementary techniques. Accurate and reliable

localization of epileptiform activity from spontaneous MEG data has been an elusive goal.

One approach toward this goal is to use a novel Bayesian inference algorithm—the

Champagne algorithm with noise learning—which has shown tremendous success in

source reconstruction, especially for focal brain sources. In this study, we localized

sources of manually identified MEG spikes using the Champagne algorithm in a

cohort of 16 patients with medically refractory epilepsy collected in two consecutive

series. To evaluate the reliability of this approach, we compared the performance to

equivalent current dipole (ECD) modeling, a conventional source localization technique

that is commonly used in clinical practice. Results suggest that Champagne may

be a robust, automated, alternative to manual parametric dipole fitting methods for

localization of interictal MEG spikes, in addition to its previously described clinical and

research applications.

Keywords: source localization, epilepsy, source imaging analysis, magnetoencephalography, spike analysis, brain

source imaging, brain source localization

1. INTRODUCTION

Epilepsy is a neurological disorder that poses an important challenge due to its prevalence, as
it affects about 0.8–1% of the world population (Organization et al., 2005; Moshé et al., 2015).
While typical pharmacological treatments work to control seizures for the majority of people with
epilepsy, roughly one-third suffer from drug-resistant epilepsy (Lamberink et al., 2017), leaving
surgery as a possible option for treatment (Ryvlin et al., 2014) for those in whom the seizure onset
zone (SOZ), where seizures arise, can be identified (Zijlmans et al., 2019).Magnetoencephalography
(MEG) is increasingly used for presurgical planning in people with focal onset epilepsy refractory
to pharmacotherapy (Koster et al., 2020). MEG uses recordings of minute extra-cranial magnetic
fields produced by cortical activity, and is thereby able to display changes in brain state with a
time resolution below 1 ms. Sources of such activity can be localized with an accuracy of several
millimeters (Wheless et al., 2004). Compared to other existing techniques, MEG has the advantage
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of being completely non-invasive, and a wide range of high-
resolution analysis techniques may be applied to broadband
MEG datasets.

Like EEG, MEG can record both ictal and interictal data
but because patients are commonly studied in the MEG lab as
outpatients for only a limited amount of time, it is relatively rare
to capture a seizure, and most commonly, interictal epileptiform
discharges (spikes and sharp waves) are captured and source
modeling is carried out. The most widely used technique for
localizing interictal epileptiform discharges is a two-step process:
(1) visual detection and identification of spikes in the raw
MEG. followed by (2) calculation of the location and orientation
of equivalent current dipoles (ECD) that best account for the
observed magnetic field and review of the resulting fits (Vrba
and Robinson, 2001; Wheless et al., 2004). This method has
been proven to provide reliable and useful information for
presurgical planning by several studies (RamachandranNair et al.,
2007) that also concluded that invasive intracranial recording
techniques might eventually be replaced by MEG (Knowlton
et al., 2006). Such procedures require manual review of ECD
results, which can be time-consuming, requires trained and
experienced scorers, and contains a considerable amount of
subjectivity in the results. Additionally, users of ECD methods
typically attempt to represent activity at only one time point
associated with a spike, and so suchmodels are inherently limited
in their ability to capture activity that represents the entire time
course of such activity.

As a complement to ECDmethods, our lab developed and uses
a robust brain source imaging algorithm, Champagne, derived
based on an empirical Bayesian inference and incorporating
deep theoretical ideas about sparse-source recovery from
noisy, constrained measurements. Champagne improves source
reconstruction performance evaluated using reconstruction
accuracy, robustness, and computational efficiency measures
(Wipf et al., 2010). Experiments with simulated and real data
have shown that Champagne is robust for multiple complex
brain sources even under high interference from correlated
sources or with noisy data (Owen et al., 2012). The latest
extension of the Champagne algorithm incorporating noise
learning is able to reconstruct complex focal source activity
when corrupted by high levels of noise and interference,
while maintaining its typical high performance features (Cai
et al., 2020), without the need for baseline or control data.
Champagne with noise learning is thus especially suitable
for uses like the localization of interictal epileptiform spikes,
where there is a focal brain source and high levels of noise
may co-exist.

Here, we evaluate a source localization pipeline for
analysis of manually identified epileptiform discharges
using the Champagne algorithm with noise learning.
Once selected, this pipeline provides a fully automated
reconstruction of the source of these interictal events.
Our study demonstrates the validity of this approach
in a cohort of 16 patients with focal epilepsy and
compares it with an established clinical source localization
technique—parametric dipole fitting—to assess its practicality
and utility.

2. MATERIALS AND METHODS

2.1. Patients
In this paper, we chose 16 patients with medically refractory focal
epilepsy, one consecutive group from 2015 and one consecutive
group from 2019, who had MEG at the UCSF Biomagnetic
Imaging Laboratory and met the following inclusion criteria: all
patients were referred for MEG at UCSF as part of pre-surgical
planning. UCSF Committee on Human Research approved all
procedures. All study procedures were conducted based on the
Declaration of Helsinki. Since many patients were either external
referrals or recently scanned, therefore long-term outcome data
was not available for them. Participants gave their written
informed consent to participate in the study, or in some cases
the need for consent was waived for the purpose of retrospective
analysis by the UCSF Committee on Human Research.

2.2. Structural Images
All patients had magnetic resonance imaging (MRI) performed
at 1.5 or 3 T that was used for visualization of source localization
results. This study used the protocol including the following
sequences: (1) a T1-weighted, 3D spoiled gradient-recalled echo
in a steady state sequence with TR 34 ms, TE 3–8 ms, flip angle
30◦; (2) a T2-weighted 3D fast-spin echo sequence with TR 3000
ms, TE 105 ms. Both sequences had the following detail features:
slice thickness of 1.5 mm, matrix 256× 256× (108− 140), and a
field view of 260× 260 mm with skin-to-skin coverage including
the nasion and preauricular points.

2.3. Recordings
All MEG recordings were collected when the participants were
lying with their eyes closed in a magnetically shielded room.
Between 20 and 60 min of continuous, interictal, resting state
MEG were recorded with a 275 channel whole-head CTF Omega
2000 system (VSM MedTech, Coquitlam, BC, Canada), using
a passband of DC to 70 Hz and a sampling rate of 1,200 Hz,
then downsampling to 600 Hz. In addition, concurrent scalp
electroencephalographic (EEG) data were recorded using 19
leads placed according to the international 10–20 system, along
with an electrocardiogram channel and eye channels to assist in
the identification of artifacts. Some patients were sleep deprived
and reached various stages of sleep during the recordings.

2.4. Signal Analyses
A single-sphere (for ECD) and a multi-sphere (for Champagne
algorithm) head model were created for each patient, based
on the structural MRI images. Co-alignment of structural and
functional images was achieved by marking three prominent
anatomical points (nasion and preauricular points) of the
subject’s head on the MRI images and localizing three magnetic
fiducials attached to the same points. All recordings were
reviewed by experienced MEG technologists (MM, AF, DM)
and clinical neurophysiologists and epileptologists (HEK, HC),
and the peak of all epileptiform spikes was marked manually
based on both the MEG and EEG recordings. In addition to
the continuous recordings, spike-locked datasets were created
starting 1 s before and ending 1 s after each spike and corrected
for baseline-offset using the first 700 ms. Spikes <1 s after
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a previous spike were excluded. An equivalent current dipole
model was fitted to the magnetic field recorded with the entire
MEG sensor array during each single spike (ECDss). For each
spike, the sampling point was used that yielded the model with
the smallest residual variance. As a general rule, spikes with
dipoles having> 10% residual variance (aka error) were rejected.
Spike topography, moment strength, and orientation were also
considered for selection of ECDss. All source localizations were
done using software provided by VSMMedTech (Coquitlam, BC,
Canada). For the pipeline based on the Champagne algorithm
proposed here, we first remove the DC offset and band-pass filter
the time course for each subject with at 1–45 Hz, then we set
the time window for each spike as 25 ms before and 75 ms after
the spike peak. To run more complex spike localizations, we
also concatenate all spikes then reconstruct the brain sources by
running Champagne directly.

2.5. Performance Validation
First, we evaluate the performance of Champagne for 14
“straightforward” cases, defined as those having spikes with

localization error < 10% using ECDss. Hit rate and A
′

values are
derived using FROC analysis as previously described (Owen et al.,
2012; Sekihara, 2016; Cai et al., 2018, 2019).

Since the Champagne algorithm is a focal and sparse
distributed reconstruction algorithm that estimates source
amplitude for all voxels in the brain, to evaluate algorithm
performance we use robust thresholding methods as found in
prior simulations (Cai et al., 2020). We define a successful
localization as one that meets the following criteria: we identify
active sources estimated as those brain sources whose amplitude
exceeds 1% of the largest amplitude of the estimation. This
threshold ensures that only significant estimated sources were
selected. Amongst all estimated sources, success of a localization
requires that there should be at least one estimated source
location within 2 cm of the limits of the source location estimated
by ECDss (with localization error < 10%).

Second, we evaluate the performance of Champagne
algorithm for spikes where data were “not straightforward.” For
this, we looked at two patients who had some spikes that could
be modeled with ECDss with acceptably low error (< 10%)
to a consistent cluster of plausible sources that also matched
clinical data (eg seizure semiology, ictal EEG), but ALSO had
other spikes with similar waveforms in sensor space (and on
simultaneous EEG) but with errors > 25% when modeled using
ECDss. We defined “ground truth” in this scenario as the average
of the coordinates of the ECDss localization that had errors
< 10%. For the spikes with errors > 25% by ECDss, we applied
the Champagne algorithm to generate source models. Then we
compared the Euclidean distance between the ground truth and
the location of these “high-error spikes” (i.e., those with ECDss
localization error > 25%) as estimated by ECDss and then
by Champagne.

Finally, we evaluated the performance of the Champagne
algorithm for the localization of more complex spikes. Here, we
ran Champagne on data from one patient with spikes localizing
to two clusters of ECDss locations. We first concatenated

FIGURE 1 | A representative “straightforward” case comparing ECDss and

Champagne algorithms for spike localization (Subject 13). The top row shows

ECDss fits with errors <10% (yellow dots); the bottom row shows Champagne

localization for the same spikes (blue dots).

all spikes, then localized this interictal epileptiform activity
using Champagne.

Please see Supplementary Table 1 for clinical information
including MRI, PET, SPECT, and video-EEG results.

3. RESULTS

To evaluate the performance of Champagne for “straightforward”
cases, we chose spikes with ECDss localization errors<10% from
14 people with intractable epilepsy. Figure 1 shows these spike
localization using ECDss, and localizations for the same spikes
using the Champagne algorithm, for a representative case. As is
shown, Champagne with noise learning yields similar results.

Table 1 lists number of spikes recorded for each of the
14 subjects in the “straightforward” group, with the ability of
Champagne as compared to ECDss to localize the same spikes

in 14 subjects, including hit rate and A
′

metric calculated as
described previously (Owen et al., 2012; Sekihara, 2016; Cai et al.,
2018, 2019). Figure 2 illustrates this performance of Champagne
across this group of 14 people with intractable epilepsy. Note that

the mean A
′

metric across all 14 subjects is 0.9, suggesting that
the localization provided by the Champagne algorithm is similar

to that of ECDss (TheA
′

metric is> 0.75% in one subject because
we recorded only five spikes during this study).

To evaluate the performance of our newer pipeline for spikes
that are “not straightforward,” we ran the Champagne algorithm
on spikes where ECDss fitting had yielded errors > 25% in
data from two patients (NB one of these two patients had
several distinct spike populations/morphologies, one of which
was described, analyzed and included in the previous group
of 14 “straightforward”). Note that these were spikes where
the morphology on EEG and MEG suggested that all spikes
(those that modeled with higher vs. lower error using ECDss)
might arise from the same source. Here, we defined as ground
truth the set of source localizations with low error (< 10%)
using ECDss on the majority of spikes from the same patients.
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TABLE 1 | Overview of source localizations of interictal epileptiform activity recorded from 14 patients.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Num of spikes 36 18 21 5 6 27 9 25 16 10 15 11 21 22

Hit ratio 0.6111 0.7222 0.8571 0.4 0.6667 0.8889 0.7778 0.84 0.9375 1 1 0.9091 1 0.8636

A′ metric 0.7855 0.8416 0.9072 0.6813 0.8142 0.9326 0.8675 0.8987 0.9317 0.9746 0.9694 0.9383 0.9834 0.9032

FIGURE 2 | Performance of Champagne for 14 subjects with spikes where

ECDss error <10%. The violin plot shows the distribution of A
′

metric across

all subjects; each dot represents data from one person. Note that the white

point represents the mean, the box subtends the middle quartiles and the

whiskers the outer deciles.

Figure 3 shows the localization result of more than 49 “not-
straightforward” spikes using ECDss and Champagne algorithms
(A). The localization results of ECDss with error > 25% are
distributed over whole brain (B), while the localization results
of Champagne are more focal (C). Distance between the ground
truth and the ECDss result is 4 cm, much higher than that of
Champagne 3 cm. Figure 4 shows similar data for another patient
with 38 spikes (errors > 25%).

Figure 5 shows the localization results of one more complex
scenario, when spikes localize to clusters of dipoles. Here, we first
ran ECDss in an additional patient. We show the localization
results in the first row of Figure 5. We then concatenated all
spikes and localized them using Champagne. As shown from the
first row of Figure 5, with ECDss localizations are classified into
two clusters. The second and third rows present the Champagne
localization results. We can see that Champagne is able to localize
these two clusters of interictal epileptiform activity.

4. DISCUSSION

Over the past three decades, whole-head MEG has continued to
prove its value as an important tool for the evaluation of people
withmedically refractory epilepsy. As a key part of the presurgical
workup, it can assist in the identification of the SOZ by
providing corroboration of hypotheses and enabling resection or
implantation of electrodes for staged evaluations. MEG interictal
epileptiform activity is one of many potential surrogates for SOZ,
and though emergingMEG biomarkers including high frequency

FIGURE 3 | Localization of high-error spikes by ECDss and Champagne

algorithms: Subject 1. (A) Ground truth as defined by localizations of spikes by

ECDss with errors <10%. (B) Localizations of spikes by ECDss with error

>25% (C) Localization results when spikes with error >25% by ECDss were

then localized using the Champagne algorithm. (D) Distance between the

ground truth (A) and the localization result by ECDss (B) and Champagne (C)

for those spikes with ECDss error >25%. For (D), whiskers indicate SEM.

oscillations may supplant its role (Frauscher et al., 2017), it is the
most well-established, familiar, and widely used. The standard
method of source localization is the localization in individual
interictal epileptic spikes using dipole fitting (ECDss) (Bagic
et al., 2011). However, this technique is operator-dependent
and time-consuming. Dipole fitting procedures often do fail
under both low and high SNR regimes, and when spikes do
not show a clear dipolar topography, and has shown to have
weak localization accuracy (Kobayashi et al., 2005; Fujiwara et al.,
2012).

To explore the performance of Champagne algorithm
with noise learning for clinical use in the localization of
interictal epileptiform discharges—“spikes”—we compared its
performance against ECDss in three common scenarios.

First, for “straightforward” cases, where ECDss solutions had
low error, Champagne with noise learning yields similar results

and the mean A
′

metric across all 14 subjects is around 0.9. This
illustrates that Champagne can perform equivalently to ECDss in
this common use scenario.
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FIGURE 4 | Localization of high-error spikes by ECDss and Champagne

algorithms: Subject 15. (A) Ground truth as defined by localizations of spikes

by ECDss with errors <10%. (B) Localizations of spikes by ECDss with error

>25% (C) Localization results when spikes with error >25% by ECDss were

then localized using the Champagne algorithm. (D) Distance between the

ground truth (A) and the localization result by ECDss (B) and Champagne (C)

for those spikes with ECDss error >25%. For (D), whiskers indicate SEM.

We then address a second common scenario: where there
spikes where ECDss fails due to high error. To test this we looked
specifically at a group of people who had a population of spikes
that could be modeled using ECDss to yield a cluster of dipoles
that were then used as “ground truth.” They also had spikes
that were more difficult to model with ECDss (albeit having a
similar waveform in sensor space and similar EEG morphology
to those with lower error ECDss models). When these were
modeled, localization results using Champagne were more focal
than were results generated by ECDss. In addition, Champagne
localizations were much closer to the low error “ground truth”
ECDss localizations than were the high error ECDss fits. In these
cases, therefore, we show how we can use Champagne to salvage
spikes that could not be confidently modeled using ECDss due to
high error.

We also address a third scenario, in one patient with
two plausible clusters of ECDss sources corresponding to
interictal spikes. For this patient, the Champagne algorithm
is able to resolve these two clusters and to reconstruct
independent sources.

The pipeline we describe here does require manual detection
and identification of interictal epileptiform activity at an
early analysis stage. Later stages of the process are relatively
automated, and can be used by operators with variable degrees
of neurophysiology expertise. In recent years, similar Bayesian
iterative approaches have been applied to this problem in order to
develop semi-automated algorithms for clinical use. For example,
an automated multidipole iterative Monte Carlo approach called

FIGURE 5 | The localization results for one patient (Subject 16) with spikes in

two clusters by ECDss and by Champagne algorithm.

“SESAME” was evaluated by Luria et al. (2020) and was
concordant with standard ECD fitting done by experienced staff.
Pellegrino et al. (2018) applied the coherent Maximum Entropy
of the Mean (cMEM) to yield distributed magnetic source images
(dMSI) that provided improved accuracy compared to ECD, also
having the advantage of user-independent results; as dMSI results
provide spatial and temporal voxelwise information, they can
offer information about anatomic extent of source beyond that
available from ECD. We note that our approach is comparable to
these similar approaches that others have taken, and performance
compared to standard ECD methods is likewise comparable.
Together, these experiences suggest clear and robust alternatives
to parametric dipole fitting procedures.

5. CONCLUSION

The application of the Champagne algorithm with noise
learning allows the localization of underlying brain activity
in a precise and objective manner without the need for
additional “baseline” or “control” data to estimate contributions
to sensors from noise. Here, we demonstrate our use of the
Champagne algorithm in some scenarios commonly encountered
during source localization of interictal spikes in people with
intractable epilepsy. By comparing the results of Champagne to
a conventional source localization technique, ECDss, we have
shown its equivalency, and have also illustrated its use as a salvage
technique in some scenarios where ECDss may fail. The results
suggest that Champagne is a reliable alternative to manual ECDss
dipole fitting for clinical application.
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Supplementary Table 1 | Clinical characteristics of the 16 subjects. The first 14

described here appear in Table 1. Note that some patients were referred from

outside institutions and thus their information was limited to that available at the

time of the MEG scan. FCD = focal cortical dysplasia; Lt = Left; Rt = Right; temp

= temporal; occip - occipital; ATL = anterior temporal lobectomy; MTS = mesial

temporal sclerosis; ECoG = electrocorticography; ED = epileptiform discharge;

PQ = posterior quadrant; GFPA = generalized paroxysmal fast activity; SEEG =

stereo-EEG; hypo = hypometabolism; PVNH = periventricular nodular

heterotopia; c/w = consistent with.
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