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a b s t r a c t 

Robust estimation of the number, location, and activity of multiple correlated brain sources has long been a 

challenging task in electromagnetic brain imaging from M/EEG data, one that is significantly impacted by in- 

terference from spontaneous brain activity, sensor noise, and other sources of artifacts. Recently, we introduced 

the Champagne algorithm, a novel Bayesian inference algorithm that has shown tremendous success in M/EEG 

source reconstruction. Inherent to Champagne and most other related Bayesian reconstruction algorithms is the 

assumption that the noise covariance in sensor data can be estimated from “baseline ” or “control ” measurements. 

However, in many scenarios, such baseline data is not available, or is unreliable, and it is unclear how best to 

estimate the noise covariance. In this technical note, we propose several robust methods to estimate the contribu- 

tions to sensors from noise arising from outside the brain without the need for additional baseline measurements. 

The incorporation of these methods for diagonal noise covariance estimation improves the robust reconstruction 

of complex brain source activity under high levels of noise and interference, while maintaining the performance 

features of Champagne. Specifically, we show that the resulting algorithm, Champagne with noise learning, is 

quite robust to initialization and is computationally efficient. In simulations, performance of the proposed noise 

learning algorithm is consistently superior to Champagne without noise learning. We also demonstrate that, even 

without the use of any baseline data, Champagne with noise learning is able to reconstruct complex brain activity 

with just a few trials or even a single trial, demonstrating significant improvements in source reconstruction for 

electromagnetic brain imaging. 
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. Introduction 

Electromagnetic brain imaging is the process of measuring and

patio-temporal reconstruction of brain activity from non-invasive sen-

or recordings of magnetic fields and electric potentials. In order to

ransform these sensor recordings into brain activity, both the forward

nd inverse models must be solved. The forward model combines source,

olume conductor, and measurement models to estimate a mixing ma-

rix called the leadfield that describes a linear relationship between

ources and the measurements. Solving the inverse problem is the pro-
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ess of devising inverse algorithms to estimate the parameters of brain

ctivity from sensor data and the leadfield matrix. 

Most inverse algorithms can be viewed in a Bayesian framework

 Sekihara and Nagarajan, 2015; Wipf and Nagarajan, 2009 ). This per-

pective is useful because at a high level, the prior distribution, im-

licitly or explicitly imposed, can be used to differentiate and compare

he various source localization methods. Recently, we developed Cham-

agne, a novel tomographic source reconstruction algorithm derived in

n empirical Bayesian fashion with incorporation of deep theoretical

deas about sparse-source recovery from noisy, constrained measure-

ents. Champagne improves upon existing methods of source recon-

truction in terms of reconstruction accuracy, robustness, and computa-
ntral China Normal University, Wuhan, China. 
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ional efficiency ( Wipf et al., 2010 ). Experiments with preliminary simu-

ated and real data, presented in Owen et al. (2012) , show that compared

o other commonly-used source localization algorithms, Champagne is

ore robust to interference from correlated sources and noisy data. 

Inherent to Champagne is the availability of “baseline ” data to es-

imate the statistics of the “brain noise ”. However, in many MEG and

EG experimental scenarios, ”baseline ” data is not available or is unreli-

ble. For example, in certain paradigms, there are artifacts that are only

resent in the ”active ” time-period and absent in the baseline or control

eriod, such as during experiments with speaking or other muscle move-

ents. Also, in experiments involved event-related desynchronization,

he signal amplitude decreases relative to the baseline levels. In such sit-

ations, it is unclear how noise estimation should be accomplished for

lgorithms such as Champagne. This predicament also applies to other

ayesian source reconstruction methods such as Saketini ( Zumer et al.,

007 ), NSEFALoc ( Zumer et al., 2008 ) and LowSNR-BSI ( Hashemi and

aufe, 2018 ). 

In this technical note, we propose robust methods to estimate the

ontributions to sensors from noise without the need for additional

baseline ” or ”control ” measurements. Importantly, the proposed meth-

ds preserve the robust reconstruction performance features of the

parse source reconstruction algorithm Champagne. Our novel robust

oise estimation algorithms partition contributions to the sensor data

rom brain activity sources and noise related activity, with correspond-

ng Gaussian variance parameters for both brain sources and noise that

re estimated from data. Variance parameters are estimated using em-

irical Bayesian inference, i.e. maximizing the marginal likelihood of

he data. 

The resulting inference algorithms are quite robust to the prior ini-

ialization variance, to different noise modalities, to the reconstruction

f highly correlated multiple sources, and to the effect of high levels

f interference and noise. In simulations, performance of the proposed

oise learning algorithms are consistently superior to original Cham-

agne without noise learning. Without baseline data, the novel noise

earning algorithms are robust to correlated brain activity present in

eal data sets and are able to reconstruct complex brain activity with

ew trials or even a single trial, demonstrating significant improvements

n electromagnetic brain imaging. 

Section 2 describes the original Champagne algorithm and Cham-

agne algorithm with noise learning in detail. Section 3 describes the

ested simulation configurations, performance evaluation metrics, and

nalyzed real datasets. Section 4 describes performance results in simu-

ated and real data, followed by brief discussion in Section 5 . 

. Methods 

This section first briefly reviews the probabilistic generative model

or electromagnetic brain imaging used by the Champagne algorithm,

he original Champagne algorithm which provides the necessary update

ules for brain sources time course and voxel variance estimates with

he statistics of the background activity estimated from ”baseline ” or

control ” measurements. Following this, we propose robust methods to

stimate the contributions to sensors from noise arising from outside

he brain without the need for additional baseline measurements. In

ummary, the Champagne algorithm with noise learning initializes the

oxel variances and diagonal noise covariance and updates them until

he marginal likelihood converges, and after convergence outputs the

rain source activity time-courses. 

.1. Probabilistic generative model for electromagnetic brain imaging 

We assume that MEG or EEG data have been collected for induced

r spontaneous brain activity paradigms, with separate time-windows

or induced or spontaneous source activity and for background inter-

erence including biological, environmental sources, and sensor noise.

e define the following parameters: 𝐲( 𝑡 ) ∈ ( ℝ ) 𝑀×1 , is the output data of
ensors at time t, M is the number of channels measured. L = [ L 1 , … , L 𝑁 

]
s the leadfield matrix from the forward model. N is the number of vox-

ls under consideration and 𝐋 𝑛 = [ 𝐥 1 ⋅𝑛 , ⋯ , 𝐥 𝑑 𝑐 ⋅𝑛 ] ∈ ( ℝ ) 𝑀×𝑑 𝑐 is the leadfield

atrix for n- th voxel. The k- th column of L 𝑛 represents the signal vec-

or that would be observed at the scalp given a unit current source or

ipole at the n th voxel with a fixed orientation in the k -th direction.

he voxel dimension d c is usually set to 3. Multiple methods based

n the physical properties of the brain and Maxwell’s equations are

vailable for the computation of each L 𝑛 ( Hallez et al., 2007 ). For con-

enience, we also define 𝐋 = [ 𝐥 1 ⋅, ⋯ , 𝐥 𝑀 ⋅] ⊤, where 𝐥 𝑚 ⋅ denotes the m -th

ow vector of L . 𝐬 ( 𝑡 ) = [ 𝐬 𝑇 1 ( 𝑡 ) , … , 𝐬 𝑇 
𝑁 

( 𝑡 )] 𝑇 is the unknown brain activity.

 𝑛 ( 𝑡 ) = [ 𝑠 1 
𝑛 
( 𝑡 ) , ⋯ , 𝑠 

𝑑 𝑐 
𝑛 ( 𝑡 )] 

⊤
∈ ( ℝ ) 𝑑 𝑐 ×1 is the n- th voxel intensity at time t ,

hich we assume it with d c orientations. The generative probabilistic

odel for the sensor data at time point t can be written as: 

 ( 𝑡 ) = 𝐋𝐬 ( 𝑡 ) + 𝜺 ( 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝐋 𝑛 𝐬 𝑛 ( 𝑡 ) + 𝜺 ( 𝑡 ) , (1) 

ith prior distributions 𝐬 ( 𝑡 ) ∼  ( 𝐬 ( 𝑡 ) |𝟎 , 𝜶) and 𝜺 ( 𝑡 ) ∼  (0 , 𝚲) . Where 𝚲 =
iag ( 𝜆1 , 𝜆2 , ⋯ , 𝜆𝑀 

) and 𝜶 is defined as d c N × d c N block diagonal matrix

xpressed as 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝛼1 I 𝑑 𝑐 ×𝑑 𝑐 0 ⋯ 0 

0 𝛼2 I 𝑑 𝑐 ×𝑑 𝑐 ⋯ 0 
⋮ ⋮ ⋱ ⋮ 
0 0 ⋯ 𝛼𝑁 

I 𝑑 𝑐 ×𝑑 𝑐 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (2) 

𝑛 I 𝑑 𝑐 ×𝑑 𝑐 is a prior variance d c × d c matrix of 𝐬 𝑛 ( 𝐭 ) and I 𝑑 𝑐 ×𝑑 𝑐 is a

 c × d c identity For simplicity, we define matrix 𝐘 = [ 𝐲(1) , … , 𝐲( 𝑇 )] and

 = [ 𝐬 (1) , … , 𝐬 ( 𝑇 )] as the entire sensor and source time series, where T is

he number of time points. The prior distribution 𝑝 ( S |𝜶) is then defined

s 

 ( 𝐒 |𝜶) = 

𝑇 ∏
𝑡 =1 

 ( 𝐬 ( 𝑡 ) |𝟎 , 𝜶) = 

𝑇 ∏
𝑡 =1 

𝑁 ∏
𝑛 =1 

 

(
𝐬 𝑛 ( 𝑡 ) 

|||𝟎 , 𝛼𝑛 𝐈 𝑑 𝑐 ×𝑑 𝑐 ), (3) 

ur goal is to jointly estimate the posterior mean 𝐬 𝑛 , the parameters 𝜶

nd 𝚲. 

.2. The original Champagne algorithm 

We provide a brief overview of the original Champagne algo-

ithm, detailed derivations can be found in Wipf et al. (2010) and

wen et al. (2009) . Important to note that, in the original Champagne

lgorithm, the noise covariance 𝚲 is learnt from available baseline or

ontrol measurements ( Wipf et al., 2010 ). In contrast, here we describe

pdate rules for estimation of a diagonal noise covariance, without base-

ine measurements. 

Brain source activity is estimated from the posterior distribu-

ion of the voxel activity 𝑝 ( S |Y ) . The voxel variance hyperparame-

ers are estimated by maximizing a bound on the marginal likelihood

 ( Y |𝜶) . Although there are multiple ways to derive update rules for

( Wipf and Nagarajan, 2009 ), in Champagne we utilize a convex

ounding ( Jordan et al., 1999 ) on the logarithm of marginal likelihood

model evidence), which results in fast and convergent update rules

 Hashemi et al., 2020 ). For a detailed derivation of the original Cham-

agne, we refer to our previous paper ( Wipf et al., 2010 ). Table 1 lists

he sources level updates and the cost function used in Champagne. 

.3. Diagonal noise covariance estimation ( 𝚲) 

The diagonal noise covariance can be defined with two different

tructures: homoscedastic and heteroscedastic ( Black et al., 2012; Col-

an, 2015 ). Homoscedastic noise assumes the noise variance is the same

or all sensors. In contrast, heteroscedastic noise assumes the noise vari-

nce differs between sensors. In this paper, we assume the noise covari-

nce is heteroscedastic, as homoscedastic noise can be easily handled by
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omputing a scalar average of the diagonal elements of the heteroscedas-

ic covariance matrix and multiplying by an M × M identity matrix. We

ntroduce three ways to derive the update rules for the noise covari-

nce 𝚲: marginal likelihood maximization, expectation-maximization,

nd convex-bounding of the marginal likelihood. 

.3.1. Learning diagonal noise covariance using marginal likelihood 

aximization 

The diagonal noise covariance 𝚲 can be directly estimated by setting

he derivative of the cost function with respect to 𝚲 to zero with fixed 𝜶,

ore details is shown in Appendix A , the update rule for 𝜆m 

is expressed

s: 

̂
𝑚 = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝑦 𝑚 ( 𝑡 ) − 𝐥 𝑚 ⋅𝐬 ( 𝑡 ) 

)2 + 𝐥 𝑚 ⋅𝚪−1 𝐥 ⊤
𝑚 ⋅, (4) 

here 𝚪 = 𝜶
−1 + L ⊤𝚲−1 L . An alternative derivation of the diagonal noise

ovariance using the Expectation Maximization (EM) algorithm is shown

n Appendix B which results in identical update rules. 

.3.2. Learning diagonal noise covariance by maximizing convex bound of 

arginal likelihood 

Another way to estimate the diagonal noise covariance is using an

uxiliary cost function which is based on maximizing a convex bound-

ng function of the marginal likelihood. This method has the following

dvantages: first, the convex bounding approach is guaranteed to re-

uce the cost function at each iteration; second, it shows higher com-

utation efficiency and faster convergence compared to EM-based esti-

ation; third, noise learning and voxel variance learning can be easily

nified to produce one simple generative model. Diagonal noise covari-

nce update rules can be derived through convex bounding of the cost

unction, more details is shown in Appendix C , the update rules are: 

̂
𝑚 = 

√ √ √ √ 

1 
𝑇 

∑𝑇 

𝑡 =1 
(
𝑦 𝑚 ( 𝑡 ) − 𝐥 𝑚 ⋅𝐬 ( 𝑡 ) 

)2 
𝑞 𝑚 

. (5)

̂ 𝑚 = 

(
𝚺−1 
𝑦 

)
mm 

. (6)

here q = [ 𝑞 1 , 𝑞 2 , ⋯ , 𝑞 𝑀 

] ⊤ is an auxiliary variable, e 𝑚 is a M × 1 vector

nd the element in m- th row is 1, the others are 0. With convex-bounding

CB) based update rules for noise, it is possible to efficiently estimate the

oxel and noise covariance simultaneously by lead-field augmentation,

s described in Appendix D . 

.4. Summary 

In summary, as is shown in Table 1 , the Champagne algorithm with

oise learning does not need the input of noise covariance 𝚲, it first ini-

ializes the voxel variances and noise covariance with random values,

hen updates the voxel variances (the same as the original Champagne)

nd the noise covariance using EM or CB. Each iteration of this Cham-

agne algorithm with noise learning theoretically guarantees to reduce

or leave unchanged) the cost function of the data. Finally, the Cham-

agne algorithm with noise learning outputs the brain activity time

ourses. 

. Performance evaluation of simulated and real data 

.1. Benchmarks for comparison 

We implemented two variants of Champagne with noise learning -

) using marginal likelihood maximization or expectation maximization

EM) and 2) using convex bounding (CB) which are referred to as EM_NL

nd CB_NL respectively. For simplicity, this paper does not show the

erformance results of noise-learning with homoscedastic noise as its

erformance is often comparable to the use of heteroscedastic noise.
e compare these two variants of Champagne with noise learning with

hree different benchmarks. A first benchmark we use is the original

hampagne with different fixed levels of noise estimated by noise sub-

pace decomposition of the sample data covariance. We refer to this

lgorithm as Champagne with Noise_Sub. A second benchmark is the

riginal Champagne where we use available baseline data (in simula-

ions) to learn a low-rank non-diagonal noise covariance using the Vari-

tional Bayes Factor Analysis algorithm (VBFA) ( Nagarajan et al., 2007 ).

his benchmark would represent an upper bound on the performance

f Champagne with noise learning when baseline data is available. For

eal data, we also include sLORETA as a third benchmark algorithm for

omparison. 

.2. Simulation configurations 

We generate data by simulating dipole sources with fixed orienta-

ion. Damped sinusoidal time courses with frequencies sampled ran-

omly between 1 and 75 Hz are created as voxel source time activ-

ty and then projected to the sensors using the leadfield matrix gener-

ted by the forward model. We assume 271 MEG sensors and a single-

hell spherical model ( Hallez et al., 2007 ) as implemented in SPM12

 http://www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution of

196 voxels at approximately 5 mm spacing. The time period is set as

80 samples with source activities of interest and noise activity. To eval-

ate the robustness of the proposed noise learning methods, we ran-

omly choose noise activity with real brain noise consisting of actual

esting-state sensor recordings collected from ten human subjects pre-

umed to have only spontaneous brain activity and sensor noise. Signal-

o-noise ratio (SNR) and correlations between voxel time courses are

aried to examine algorithm performance. SNR and time course corre-

ation are defined in a standard fashion ( Cai et al., 2018; Owen et al.,

012 ). 

We examined performance for reconstruction of 5 random seeded

ipolar sources with an SNR of 3 dB (real brain noise) and inter-source

orrelation coefficient of 0.99. The ratio of noise covariance to sample

ata covariance for all algorithms was increased from 0.05% to 10%. 

We increased the number of seeded dipolar sources to evaluate the

lgorithm performance as a function of the number of sources. For these

imulations, inter-source correlation coefficient was fixed at 0.99 and

NR was fixed at 3 dB. The number of seeded dipolar sources was in-

reased from 3 to 15 with a step of 2. 

We also evaluated algorithm performance as a function of SNR. Re-

onstruction performance was evaluated for 5 randomly seeded dipolar

ources with an inter-source correlation coefficient of 0.99. Simulations

ere performed at SNRs from -10 dB to 20 dB in steps of 5 dB. 

For Champagne with Noise_Sub, the noise covariance 𝚲 is assumed to

e fixed as a scalar value multiplied by an identity matrix, and computed

s a percentage of the norm of the sample data covariance. 

.3. Real datasets 

Real MEG data was acquired in the Biomagnetic Imaging Laboratory

t University of California, San Francisco (UCSF) with an Omega 2000

hole-head MEG system from CTF Inc. (Coquitlam, BC, Canada) with

200 Hz sampling rate. The leadfield for each subject was calculated

n NUTMEG ( Dalal et al., 2004 ) using a single-sphere head model (two

pherical orientation leadfields) and an 8 mm voxel grid. Each column

as normalized to have a norm of unity. The data were digitally filtered

rom 1 to 70 Hz to remove artifacts and DC offset. 

Three real MEG data sets were used to evaluate the application of the

lgorithms: 1. Somatosensory Evoked Fields (SEF); 2. Auditory Evoked

ields (AEF); 3. Resting state data. The first two data sets have been re-

orted in our prior publications using the Champagne algorithm, and

etails about these datasets can be found in Wipf et al. (2010) and

wen et al. (2012) . In order to evaluate the robustness of our novel

http://www.fil.ion.ucl.ac.uk/spm\051
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Fig. 1. Aggregate performance in simulations for different noise levels for 

Champagne with true non-diagonal noise, Noise_Sub and for the noise learning 

algorithms proposed here. Five random dipolar sources are seeded with inter- 

source correlation coefficient of 0.99. The SNR is set to 3 dB with real brain 

noise. Results are averaged with 50 simulations at each data point and the error 

bars show the standard error. 
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lgorithms for noisy data, we collected SEF and AEF data from five sub-

ects (around 250 trials per subject for SEF, 120 trials per subject for

EF). We tested reconstruction with the number of trials limited to 1,

, 12 and 63 for both SEF and AEF. Each reconstruction was performed

0 times with the specific trials themselves chosen as a random subset

f all available trials. For resting state data analysis, six subjects were

nstructed simply to keep their eyes closed and their thoughts clear. We

ollected 4 trials per subject, each trial of 1-min length with a sampling

ate of 1.2 kHz. We randomly chose 10 seconds or equivalently 12,000

ime samples for brain source reconstruction from each subject. 

.4. Quantifying algorithm performance 

To evaluate the performance of localization results, we use free-

esponse receiver operator characteristics (FROC) which shows the

robability for detection of a true source in an image versus the ex-

ected value of the number of false positive detections per image ( Cai

t al., 2018; Darvas et al., 2004; Owen et al., 2012; Sekihara, 2016 ).

ased on the FROC, we compute an 𝐴 

′
metric ( Cai et al., 2019; Snod-

rass and Corwin, 1988 ) which is an estimate of the area under the

ROC curve for each simulation. If the area under the FROC curve is

arge, then the hit rate is higher compared to the false positive rate. The

 

′
metric is computed as follows: 

 

′ = 

𝐻 𝑅 − 𝐹 𝑅 

2 
+ 

1 
2 
. (7)

it rate ( H R ) is calculated by dividing the number of hits for dipolar

ources by the true number of dipolar sources. The false rate ( F R ) is de-

ned by dividing the number of potential false positive voxels by the

otal number of false voxels for each simulation. The details of the 𝐴 

′

etric calculation can be referred to in our previous paper ( Cai et al.,

019 ). We then calculate the correlation coefficient between the seed

nd estimated source time courses for each hit, which is used to deter-

ine the accuracy of the time course reconstructions and denoted as �̄� .

inally, we combine these two metrics that capture both the accuracy

f the location and time courses of the algorithms into a single metric

alled the Aggregate Performance (AP) ( Cai et al., 2019; 2018; Owen

t al., 2012 ): 

𝑃 = 

1 
2 ( 𝐴 

′ + 𝐻 𝑅 �̄� ) . (8) 

he AP ranges from 0 to 1, with higher numbers reflecting better perfor-

ance ( Cai et al., 2018; Darvas et al., 2004; Owen et al., 2012; Sekihara,

016 ). To calculate the mean and variance of AP, the results were aver-

ged with 50 simulations at each configuration. 

.5. Algorithm initialization 

The initialization for the algorithms are as follows. For Champagne

ith Noise_Sub, the noise covariance 𝚲 is assumed to be fixed as a scalar

alue multiplied by an identity matrix, and the scalar value was com-

uted as a percentage of the norm of the sample data covariance. A

ange of percentages from 0.05% to 10% are utilized. For both variants

f Champagne with noise learning, the initialization for noise covariance

s set to the equivalent Noise_Sub covariance matrix. Initialization of hy-

erparameters for brain source activity 𝜶 is performed by computing the

inimum-Norm Estimation (MNE) ( Sekihara and Nagarajan, 2015 ) to

stimate voxel variances. For the benchmark algorithm sLORETA used

n real datasets, we use the default setting in NUTMEG software where

he regularization parameter is equal to the maximum eigenvalue of the

ensor data covariance ( Dalal et al., 2004 ). In real data sets, since we do

ot know the details of the noise, ground truth is defined as the brain

ctivity estimated from all available trials for each subject. 
. Results 

.1. Simulation results 

In Fig. 1 , five random dipolar sources are seeded with inter-source

orrelation coefficient of 0.99. The SNR is set as 3 dB with real brain

oise. The ratio of noise covariance to sample data covariance for all al-

orithms are increased from 0.05% to 10%. As shown, EM_NL and CB_NL

how similar aggregate performance results, which consistently outper-

orm the Champagne algorithms without noise learning and are close to

riginal Chamapagne with true non-diagonal noise. In contrast, increas-

ng the ratio decreases the performance of Champagne with Noise_Sub.

Fig. 2 (A) plots aggregate performance results of varying the num-

er of seeded dipolar sources and SNR. Results of all algorithms in re-

ponse to increasing number of seeded dipolar sources are presented in

ig. 2 (A). Here, the inter-source correlation coefficient is fixed at 0.99

nd SNR is fixed at 3 dB. All algorithms have the same trend, show-

ng decreasing performance as number of sources increases. In general,

he performance of EM_NL and CB_NL are similar and close to original

hampagne with true non-diagonal noise covariance setting. In addi-

ion, EM_NL and CB_NL consistently show better performance results

han original Champagne with Noise_Sub. When increasing the ratio of

oise subspace covariance to data covariance, the performance of Cham-

agne with Noise_Sub decreases. Champagne with Noise_Sub (0.1%)

roduces the best performance among all noise subspace covariance set-

ings and Champagne with Noise_Sub (10%) produces the worst perfor-

ance. 

Performance results versus SNR for all algorithms are plotted in

ig. 2 (B). Reconstruction performance is evaluated for five randomly

eeded dipolar sources with an inter-source correlation coefficient of

.99. Again, all algorithms have the same trend, with increasing per-

ormance as the SNR increases. EM_NL and CB_NL perform similar to

riginal Champagne with true non-diagonal noise covariance setting

nd consistently produce more accurate results than Champagne with

oise_Sub. Champagne with Noise_Sub (0.1%) produces the best per-

ormance among all non-noise learning algorithms and Champagne with

oise_Sub (10%) shows the worst performance. 

In summary, from the results of our computer simulations, we

an conclude that EM_NL and CB_NL consistently show similar and

loser performance to original Champagne with true non-diagonal noise,

hich outperform Champagne with Noise_Sub (0.1% to 10%). Incorrect

oise covariance estimation for traditional Champagne generates poor

erformance, as expected. Since EM_NL and CB_NL show similar per-
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Fig. 2. Simulation results of aggregate performance versus 

(A) number of seeded dipolar sources; (B) signal-to-noise ra- 

tio. The results are averaged with 50 simulations at each 

data point and the error bars show the standard error. 

Fig. 3. Sensory Evoked Field localization results versus 

number of trials using Champagne with Noise_Sub (0.1% 

to 10%), sLORETA, and Champagne with CB_NL. 
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C  
ormance, for simplicity, in the next section for real data sets, we only

resent the performance of CB_NL. 

.2. Results of real datasets 

.2.1. Somatosensory evoked field paradigm 

Fig. 3 shows localization results of the somatosensory evoked field

esponse due to somatosensory stimuli presented to one representative

ubject’s right index finger. A peak should be typically seen ~ 50 ms af-

er stimulation in the contralateral (in this case, the left) somatosensory

ortical area for the hand, i.e., dorsal region of the postcentral gyrus

hand knob). To evaluate algorithmic robustness, we randomly choose

everal subsets of trials for reconstruction. Since for SEF data sets, there

s only one dominant brain source, we present another widely used

enchmark for comparison-sLORETA. As is shown, Champagne with

B_NL is able to localize activation to the correct area of the somatosen-

ory cortex with focal reconstructions under even a few trials or a single

rial. Champagne with Noise_Sub (10%) is able to produce reasonable

esults when the number of trials is equal or larger than 12, otherwise,

ocalization with Champagne with Noise_Sub is biased towards the edge

f the head and contains several false areas of brain activity. sLORETA

s able to localize diffuse brain activity at the somatosensory cortex with

2 and 63 trials; otherwise, the activity is falsely localized. 

Fig. 4 shows five individuals and averaged aggregate performance

esults of Champagne with Noise_Sub (0.1% to 10%), sLORETA, and

hampagne with CB_NL for sensory evoked field localization versus

umber of trials. Error bars depict standard errors. Trials are randomly

hosen from around 250 trials from each subject and the number of trials

s increased from 1 to 63. Each condition is tested 30 times for each sub-
ect. Ground truth is defined as the brain activity estimated from around

50 trials per subject. The same strategy is used as for simulations to

btain the aggregate performance for each test. In general, increasing

he number of trials increases the performance of all algorithms. Cham-

agne with CB_NL consistently produces better results than Champagne

ith Noise_Sub and sLORETA. 

.2.2. Auditory evoked field paradigm 

Fig. 5 shows Auditory evoked field (AEF) localization results versus

umber of trials from a single representative subject using Champagne

ith Noise_Sub, sLORETA, and Champagne with CB_NL. The power at

ach voxel around the M100 peak is plotted for each algorithm. Again,

hampagne with CB_NL is able to localize the expected bilateral brain

ctivation with focal reconstructions under even a few trials or even a

ingle trial. The limited number of trials does not influence the recon-

truction results. Specifically, the activities localize to Heschl’s gyrus in

he temporal lobe, which is the characteristic location of the primary

uditory cortex. 

Champagne with Noise_Sub (10%) is able to localize the bilateral

uditory activity when the number of trials is larger than 12 and Cham-

agne with Noise_Sub (1%) is able to localize the bilateral auditory

ctivity with the number of trials is 63; otherwise, localization by

hampagne with Noise_Sub is biased towards the edge of the head

nd produces several areas of pseudo brain activity. Inaccurate noise

ovariance estimation further degrades the performance of Champagne

ith Noise_Sub. sLORETA is unable to localize bilateral auditory

ctivity in all conditions. 

Fig. 6 shows aggregate performance results from five subjects for

hampagne with Noise_Sub (0.1% to 10%), sLORETA, and Champagne
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Fig. 4. Aggregate performance results versus number of 

trials for SEF for five subjects using Champagne with 

Noise_Sub (0.1% to 10%), sLORETA, and Champagne with 

CB_NL. 

Fig. 5. Auditory evoked field (AEF) localization results 

versus number of trials from one representative subject us- 

ing Champagne with Noise_Sub (0.1% to 10%), sLORETA, 

and Champagne with CB_NL. 

Fig. 6. Aggregate performance results versus number of 

trials for AEF from five subjects using Champagne with 

Noise_Sub (0.1% to 10%), sLORETA, and Champagne with 

CB_NL. 
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Fig. 7. Localization results of spontaneous brain activity 

for six subjects using Champagne with CB_NL. 
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Table 1 The Champagne Algorithm with Noise Learning 

Input: Sensor data y ( 𝑡 ) , ( 𝑡 = 1 , … , 𝑇 ), leadfield matrix L 

Output: Brain source activity ̄s ( 𝑡 ) , ( 𝑡 = 1 , … , 𝑇 ) 

1: Set random initial values to 𝛼𝑛 , ( 𝑛 = 1 , … , 𝑁) and noise variances 

𝜆𝑚 , ( 𝑚 = 1 , … , 𝑀) 

repeat 

2: Source time-course updates Wipf et~al. (2010); Owen et~al. 

(2009) 

s̄ 𝑛 ( 𝑡 ) = �̂�𝑛 L 
⊤
𝑛 
𝚺−1 
𝑦 

y ( 𝑡 ) 

�̂�𝑛 = 

√ √ √ √ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

s̄ ⊤𝑛 ( 𝑡 ) ̄s 𝑛 ( 𝑡 ) 

�̂� 𝑛 

�̂� 𝑛 = tr ( L ⊤
𝑛 
𝚺−1 
𝑦 

L 𝑛 ) 
3: Diagonal noise covariance updates 

Marginal likelihood maximization updates (EM_NL): 

�̂�𝑚 = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

( 𝑦 𝑚 ( 𝑡 ) − l 𝑚 ∶ ̄s ( 𝑡 )) 2 + l 𝑚 ∶ 𝚪−1 l ⊤
𝑚 ∶ 

OR 

Convex bounding updates (CB_NL): 

�̂�𝑚 = 

√ √ √ √ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

( 𝑦 𝑚 ( 𝑡 )− l 𝑚 ∶ ̄s 𝑚 ( 𝑡 )) 2 

𝑞 𝑚 

𝑞 𝑚 = e ⊤
𝑚 
𝜮

−1 
𝑦 

e 𝑚 
until The following cost function converges 

 = log |𝜮𝑦 | + 

1 
𝑇 

𝑇 ∑
𝑡 =1 

y ⊤( 𝑡 ) 𝜮−1 
𝑦 

y ( 𝑡 ) 

4: Output time course ̄s ( 𝑡 ) 

p  

b  

c  

w  

n  

i  

(  

i  

a  

a

o  

i  
ith CB_NL, for Auditory Evoked Field localization as a function of the

umber of trials used for localization; the error bars show standard er-

or. Trials are randomly chosen from around 120 trials from each sub-

ect and the number of trials is increased from 1 to 63. Each condition

s tested 30 times for each subject. Again, the ground truth is defined

s the brain activity estimated from around 120 trials per subject. In

eneral, increasing the number of trials increases the performance of all

lgorithms. Champagne with CB_NL consistently produces more accu-

ate results than Champagne with Noise_Sub and sLORETA. 

.2.3. Resting state data 

The localization results for resting state data analysis from six sub-

ects are shown in Fig. 7 . For resting state analysis, there is no clear

aseline data for background noise covariance estimation. As is seen,

hampagne with CB_NL can localize all subjects’ brain activity near the

idline occipital lobe or posterior cingulate gyrus during rest. For rest-

ng state analysis, even though there is no pre-stimulus data for back-

round noise estimation, Champagne with CB_NL is able to learn the

nderlying noise and still recovers reasonable activity. 

In summary, from the reconstructed results of our real data sets,

hampagne with noise learning consistently produces better results than

hampagne with Noise_Sub (0.1–10%) and sLORETA. Champagne with

B_NL is able to localize brain activity accurately with a few trials or

ven a single trial, while Champagne with Noise_Sub (0.1–10%) fails

o localize when the number of trials is less than 12. Even though pre-

timulus data is unavailable for resting state analysis, Champagne with

B_NL is able to learn the underlying noise and still recover reasonable

ctivity. 

. Discussion 

This paper derives several robust ways to estimate contributions

o sensors from noise without the need for additional ”baseline ” or

control ” data, while preserving robust reconstruction of complex brain

ource activity and performance features of the sparse source reconstruc-

ion algorithm Champagne. The underlying data estimation portion of

he algorithms are based on a principled cost function which maximizes

he marginal likelihood or a convex lower bound on the marginal like-

ihood of the data, resulting in fast and convergent update rules. 

In our novel algorithms, we further optimize the cost function using

everal robust algorithms to learn the noise. Noise learning is accom-
lished by making assumptions about the structure of the noise followed

y Bayesian inference to derive update rules for noise estimation. Scalar

ovariance matrix can be used for the modeling of homoscedastic noise,

hile diagonal covariance matrix can be used to model heteroscedastic

oise. In our novel noise estimation algorithms, we employ the follow-

ng strategies for updating the noise covariance: Marginal Likelihood

ML) maximization, expectation maximization (EM), and convex bound-

ng (CB) based Bayesian inference. The new algorithms readily handle

 variety of configurations of dipolar brain sources under high noise

nd interference conditions without the need for additional ”baseline ”

r ”control ” measurements – a situation that commonly arises in rest-

ng state data analysis. Computationally, it can be shown that augment-
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ng the voxel leadfield matrix with an identity matrix corresponding to

ensor noise can be used to simultaneously update the voxel and noise

ovariances using convex-bounding methods efficiently. 

The novel algorithms display significant theoretical and empirical

dvantages over the existing benchmark Champagne algorithm when

he noise covariance cannot be accurately determined in advance.

imulations were developed to explore noise learning algorithmic

erformance for complex source configurations with highly correlated

ime-courses, multiple dipolar sources, and high levels of noise and

nterference. These simulations demonstrated that noise-learning Cham-

agne algorithms outperform traditional Champagne with an incorrect

oise covariance as they show higher AP scores. Furthermore, noise-

earning Champagne’s performance demonstrates that noise learning is

obust even when the algorithms are initialized to incorrect noise values.

In general, it is difficult to evaluate localization algorithm perfor-

ance with real data since the ground truth is unknown. For this reason,

e chose real data sets that have well-established patterns of brain activ-

ty (SEF and AEF). We also demonstrate that even though pre-stimulus

ata for resting state analysis does not exist, our novel algorithm is able

o learn the underlying noise and still recover reasonable activity. Per-

ormance on these real data sets demonstrates that Champagne with

oise learning is superior in localizing real brain activity when com-

ared to Champagne with Noise_Sub and sLORETA. The sLORETA algo-

ithm implemented in this paper was regularized with the default set-

ing of the maximum eigenvalue of the lead-field matrix, which we have

ound to be a robust regularization setting for this algorithm. Estimating

he regularization using Bayesian minimum-norm estimation method

nd noise updates proposed here also has the potential to improve the

erformance of sLORETA and allied minimum-norm algorithms. 

Since brain activity has a very low signal-to-noise ratio compared to

ackground activity, many trials are often required for reconstruction of

voked fields. Using our novel noise-learning algorithm, we are able to

obustly localize brain activity with a few trials or even with a single trial

n our SEF and AEF datasets, which is a revolutionary improvement in

lectromagnetic brain imaging. In fact, data collection times may be dra-

atically reduced up to ten-fold, which is particularly important in stud-

es involving children with autism, patients with dementia, or any other

ubjects who have difficulty tolerating long periods of data collection. 

We now discuss related work on noise covariance estimation for elec-

romagnetic imaging. Cross-validation and likelihood estimation meth-

ds have been proposed by Engemann et al. with the availability of sep-

rate baseline data for noise covariance estimation ( Engemann et al.,

015; Engemann and Gramfort, 2015 ). More complex spatiotempo-

al noise covariance structures have also been estimated from sepa-

ate baseline measurements ( Ahn and Jun, 0000; Bijma et al., 2003;

uizenga et al., 2002; Plis et al., 2006 ). Joint estimation of brain

ource activity and noise covariance have been previously proposed for

ype-1 penalized likelihood methods. Massias et al. (2018) proposed

 Smoothed Generalized Concomitant Lasso (SGCL) algorithm, which

xamined mixed-norm optimization for MEG imaging. This model in-

ludes a single scalar parameter for noise, independent of the multi-

le noise levels present in heterogeneous data. Subsequently, Quentin

t al. extended the SGCL framework to a Concomitant Lasso with Rep-

titions (CLaR) estimator ( Bertrand et al., 2019 ) that can cope with

ore complex noise structure estimated from non-averaged measure-

ents. In contrast to these Type-I likelihood estimation methods, the

resent Champagne algorithm with noise learning uses Type-II likeli-

ood estimation methods. We have previously shown that Type-I like-

ihood methods which make use of non-factorial, lead-field and noise-

ependent priors can be shown to have a dual with Type-II likelihood

ethods with comparable performance ( Wipf et al., 2011 ). However,

n general, in our previous papers ( Cai et al., 2019 ), performance of

ype-II likelihood estimation methods yields superior results to Type-I

ethods with factorial priors. Formal comparisons of the performance

f noise learning updates on Type-I vs Type-II estimation methods are

nteresting explorations for future work. 
Here, we assume noise is independent between different sensors in

rder to make estimating source variance and diagonal noise covari-

nce simultaneously a tractable problem. In the future, if baseline data

s available and can be used to estimate the gain matrix of interference

nd noise, adding other noise structures into the forward model, such as

ow-rank Toeplitz noise, is hoped to improve the learning of dependent

r correlated sensor noise and to further improve the estimation of brain

lectromagnetic activity in noisy environments. In addition, the appli-

ation of methods in this paper can also be derived by augmenting the

eadfield matrix with an identity matrix, see Appendix D , which will be

urther detailed and tested as part of our future work. Extending the cur-

ent Gaussian noise priors to more realistic non-Gaussian priors may also

ignificantly improve the results, which will also be part of our work in

he future. Using a noise covariance model based on a single Kronecker

roduct of spatial and temporal covariance in the spatiotemporal anal-

sis of MEG data has been demonstrated to provide improvement in the

esults over that of the commonly used diagonal noise covariance model

 Ahn and Jun, 0000; Bijma et al., 2003; Huizenga et al., 2002; Plis et al.,

006 ), which will be a potential extension for Champagne algorithm to

mprove the accuracy of brain source activity and noise estimation. In

ractice, the measured sensor noise due to non-brain sources that are

ighly correlated across sensors will have non-trivial off-diagonal ele-

ents. However, here we consider only a diagonal noise covariance to

imit the number of noise parameters. We have found that assuming a

on-diagonal noise covariance quite often results in solutions where all

rain source activity is estimated to be zero and the noise covariance

s estimated to be equal to the data covariance, perhaps due to spar-

ity priors on brain sources. Therefore, we relegate robust estimation of

on-diagonal noise covariance to future work. 
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ppendix A. Learning noise covariance using marginal likelihood 

aximization 

The first and direct way to estimate the noise covariance 𝚲 is setting

he derivative of the cost function with respect to 𝚲 to zero and fixing

, 

𝜕 

𝜕 𝚲
 = 

𝜕 

𝜕 𝚲
log |||𝚺𝑦 

||| + 

𝜕 

𝜕 𝚲
1 
𝑇 

⊤∑
𝑡 =1 

𝐲 ⊤( 𝑡 ) 𝚺−1 
𝑦 
𝐲 ( 𝑡 ) . (A.1) 

sing 𝜮𝑦 = 𝚲 + L 𝜶L ⊤ with the following matrix lemma, 

𝚲 + L 𝜶L ⊤| = 

|𝚲||𝜶−1 + L ⊤𝚲−1 L ||𝜶−1 | , (A.2) 

1 
𝑇 

𝑇 ∑
𝑡 =1 

y ⊤( 𝑡 ) 𝜮−1 
𝑦 

y ( 𝑡 ) from the second term in the right-hand side of

q. (A.1) can be computed as 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ⊤( 𝑡 ) 𝚺−1 
𝑦 
𝐲 ( 𝑡 ) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

[(
𝐲 ( 𝑡 ) − 𝐋 𝐬 ( 𝑡 ) 

)⊤𝚲−1 (𝐲 ( 𝑡 ) − 𝐋 𝐬 ‼( 𝑡 ) 
)

+ 𝐬 ⊤( 𝑡 ) 𝜶−1 𝐬 ( 𝑡 ) 
]
. (A.3) 

ince 𝚲 = diag ( 𝜆1 , 𝜆2 , ⋯ , 𝜆𝑀 

) , the update rule for 𝜆m 

is expressed as: 

̂
𝑚 = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

[(
𝐲 ( 𝑡 ) − 𝐋 𝐬 ‼( 𝑡 ) 

)(
𝐲 ( 𝑡 ) − 𝐋 𝐬 ( 𝑡 ) 

)⊤]
mm 

+ 𝐥 𝑚 ⋅𝚪−1 𝐥 ⊤
𝑚 ⋅

= 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝑦 𝑚 ( 𝑡 ) − 𝐥 𝑚 ⋅𝐬 ( 𝑡 ) 

)2 + 𝐥 𝑚 ⋅𝚪−1 𝐥 ⊤
𝑚 ⋅, (A.4) 

here 𝚪 = 𝜶
−1 + L ⊤𝚲−1 L . An alternative derivation of noise covariance

sing the Expectation Maximization algorithm is shown below, which

esults in identical update rules. 

ppendix B. Leaning noise covariance using Expectation 

aximization (EM) algorithm 

The second way to estimate the noise covariance 𝚲 is using EM al-

orithm ( Moon, 1996 ) with the following cost function ( Wipf and Na-

arajan, 2009 ) expressed as 

 

EM ( 𝚲) = 

𝑇 

2 
log |𝜶−1 | − 

1 
2 
𝐸 𝐬 

[ 

𝑇 ∑
𝑡 =1 

𝐬 ⊤( 𝑡 ) 𝜶−1 𝐬 ( 𝑡 ) 
] 

+ 

𝑇 

2 
log |𝚲|

− 

1 
2 
𝐸 𝐬 

[ 

𝑇 ∑
𝑡 =1 

( 𝐲 ( 𝑡 ) − 𝐋𝐬 ( 𝑡 ) ) ⊤𝚲−1 ( 𝐲 ( 𝑡 ) − 𝐋𝐬 ( 𝑡 ) ) 
] 

+ . (B.1) 

here  expresses terms that do not contain 𝚲. Setting the derivative

f the cost function Eq. (B.1) with respect to 𝜆m 

to zero generates the

pdate rule for noise covariance as follows 

̂
𝑚 = 

1 
𝑇 
𝐸 𝐬 

[ 

𝑇 ∑
𝑡 =1 

( 𝐲 ( 𝑡 ) − 𝐋𝐬 ( 𝑡 ) ) ( 𝐲 ( 𝑡 ) − 𝐋𝐬 ( 𝑡 ) ) ⊤
] 

mm 

= 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝑦 𝑚 ( 𝑡 ) − 𝐥 𝑚 ⋅𝐬 ( 𝑡 ) 

)2 + 𝐥 𝑚 ⋅𝚪−1 𝐥 ⊤
𝑚 ⋅. (B.2) 

he EM update rule for noise covariance in the above equation is the

ame as the update rule derived by direct maximizing marginal likeli-

ood. 

ppendix C. Learning noise covariance using convex bounding 

pproach 

The third way to estimate the noise covariance is using an auxiliary

ost function ( Wipf and Nagarajan, 2009 ) which is based on the convex
ounding approach ( Jordan et al., 1999 ). Noise covariance update rules

an be derived through convex bounding of the marginal likelihood, 

 

CB ( 𝚲) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

[(
𝐲 ( 𝑡 ) − 𝐋 𝐬 ( 𝑡 ) 

)⊤𝚲−1 (𝐲 ( 𝑡 ) − 𝐋 𝐬 ( 𝑡 ) 
]

+ 𝐪 ⊤𝚲 − 𝑞 0 , (C.1) 

here q = [ 𝑞 1 , 𝑞 2 , ⋯ , 𝑞 𝑀 

] ⊤ is an auxiliary variable, and q 0 is a scalar

erm. For the n th sensor, the convex bounding update rule for noise vari-

nce of the m-th sensor is obtained by setting the derivatives of  

CB ( 𝚲)
ith respect to 𝜆m 

to zero, resulting in 

̂
𝑚 = 

√ √ √ √ 

1 
𝑇 

∑𝑇 

𝑡 =1 
(
𝑦 𝑚 ( 𝑡 ) − 𝐥 𝑚 ⋅𝐬 ( 𝑡 ) 

)2 
𝑞 𝑚 

. (C.2) 

he update rule for q is equivalent to finding a hyperplane q ⊤𝚲 − 𝑞 0 that

orms a closest upper bound of log |𝜮𝑦 |. Such a hyperplane is found as

he plane that is tangential to log |𝜮𝑦 | ( Sekihara and Nagarajan, 2015 ).

herefore, the updated value 𝑞 𝑚 is given by 

̂ 𝑚 = 

(
𝚺−1 
𝑦 

)
mm 

. (C.3) 

here e 𝑚 is a M × 1 vector which is the leadfiled matrix for m -th sensor’s

oise, where the element in m -th row is 1, the others are 0. 

ppendix D. Estimating brain sources and noise covariance 

imultaneously using convex-bounding based approach 

We can estimate brain source activity and noise variance simultane-

usly with slight modifications to the generative model. We assume that

ach sensor measurement is the summation of whole brain activity and

ne noise source. The leadfield matrix for the noise activity is assumed

s an M × M identity matrix I = [ e 1 , … , e 𝑀 

] . The generative model can

hen be rewritten as, 

 ( 𝑡 ) = 

[
L I 

][ s ( 𝑡 ) 
𝜺 ( 𝑡 ) 

] 
(D.1) 

here 

 = [ L 1 , … , L 𝑁 

, e 1 , ⋯ , e 𝑀 

] 
= [ F 1 , … , F 𝑁+ 𝑀 

] , (D.2) 

nd 

 ( 𝑡 ) = 

[
𝐬 ⊤1 ( 𝑡 ) , … , 𝐬 ⊤

𝑁 

( 𝑡 ) , 𝜀 1 ( 𝑡 ) , ⋯ , 𝜀 𝑀 

( 𝑡 ) 
]⊤

= 

[
𝐱 ⊤1 ( 𝑡 ) , ⋯ , 𝐱 ⊤

𝑁+ 𝑀 

( 𝑡 ) 
]⊤
, (D.3) 

re the augmented leadfield matrix F 𝑘 and the time courses for the brain

ctivity and noise x 𝑘 ( 𝑡 ) , ( 𝑘 = 1 , ⋯ , 𝑁 for sources, 𝑘 = 𝑁 + 1 , ⋯ , 𝑁 + 𝑀

or noise). We also define the augmented prior hyperparameters 𝝂 for

ource and noise activity as 

= diag [ 𝛼1 I 𝑑 𝑐 ×𝑑 𝑐 , ⋯ , 𝛼𝑁 

I 𝑑 𝑐 ×𝑑 𝑐 , 𝜆1 , ⋯ , 𝜆𝑀 

] 
= diag [ 𝜈1 I 𝑑 𝑐 ×𝑑 𝑐 , ⋯ , 𝜈𝑁 

I 𝑑 𝑐 ×𝑑 𝑐 , 𝜈𝑁+1 , ⋯ , 𝜈𝑁+ 𝑀 

] . (D.4) 

tilizing the convex bounding on the marginal likelihood results in fast

onvergence properties in the following update rules: 

 𝑘 ( 𝑡 ) = �̂�𝑘 𝐅 𝑇 𝑘 𝚺
−1 
𝑦 
𝐲 ( 𝑡 ) , (D.5)

̂𝑘 = 

√ √ √ √ 

1 
𝑇 

∑𝑇 

𝑡 =1 𝑥 
𝑇 

𝑘 
( 𝑡 ) 𝑥 𝑘 ( 𝑡 ) 

�̂� 𝑘 
(D.6) 

̂ 𝑘 = tr ( F 𝑇 
𝑘 
𝚺−1 
𝑦 

F 𝑘 ) , (D.7) 

here, g k is an auxiliary variable. 𝜮𝑦 = F 𝝂F 𝑇 is the model data covari-

nce matrix. In summary, the augmentation algorithm simultaneously

stimates brain sources and noise activity x̄ 𝑛 ( 𝑡 ) by iterating between

qs. (D.5) –(D.7) . 
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