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Abstract
Objective. In biomagnetic signal processing, the theory of the signal subspace has been 
applied to removing interfering magnetic fields, and a representative algorithm is the signal 
space projection algorithm, in which the signal/interference subspace is defined in the spatial 
domain as the span of signal/interference-source lead field vectors. This paper extends the 
notion of this conventional (spatial domain) signal subspace by introducing a new definition 
of signal subspace in the time domain. Approach. It defines the time-domain signal subspace 
as the span of row vectors that contain the source time course values. This definition leads 
to symmetric relationships between the time-domain and the conventional (spatial-domain) 
signal subspaces. As a review, this article shows that the notion of the time-domain signal 
subspace provides useful insights over existing interference removal methods from a unified 
perspective. Main results and significance. Using the time-domain signal subspace, it is 
possible to interpret a number of interference removal methods as the time domain signal 
space projection. Such methods include adaptive noise canceling, sensor noise suppression, 
the common temporal subspace projection, the spatio-temporal signal space separation, and 
the recently-proposed dual signal subspace projection. Our analysis using the notion of the 
time domain signal space projection reveals implicit assumptions these methods rely on, and 
shows that the difference between these methods results only from the manner of deriving 
the interference subspace. Numerical examples that illustrate the results of our arguments are 
provided.

Keywords: interference removal, magnetoencephalography, sensor array processing,  
signal subspace, biomagnetic imaging, biomagnetism, multi-sensor array
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1.  Introduction

The notion of signal and noise subspaces has been considered 
useful in the signal processing of data acquired using multi-
channel sensor arrays [1]. In biomagnetic signal processing, 
the theory of the signal subspace has been applied to remov-
ing interfering magnetic fields, and a representative algorithm 
in this regard is the signal space projection (SSP) algorithm 
[2–4]. In this algorithm, the interference subspace is defined as 
the span of interference-source lead field vectors [2, 5], and it 
is estimated by utilizing so-called empty-room-noise data. The 
algorithm projects the measured data onto the subspace orthog-
onal to the interference subspace to remove the interference.

In biomagnetic signal processing, the signal subspace has 
been defined to reflect a spatial property of the multichannel 
data [2, 5]. On the other hand, since biomagnetic signals have 
rich temporal properties, the incorporation of temporal infor-
mation can be a natural and fruitful way to extend the notion 
of the conventional (spatial domain) signal subspace. In this 
paper, we propose, for the first time (as far as we know), a 
new definition of signal subspace in the time domain. The 
time-domain signal subspace is defined as the span of row 
vectors that contain the source time course values. Such row 
vectors are referred to as the source time course vectors.

By defining the time-domain signal subspace in this 
manner, we derive symmetric relationships between the 
time-domain signal subspace and the conventional (spatial-
domain) signal subspace. That is, while a column vector of 
signal components at a particular time point lies within the 
spatial-domain signal subspace, a row vector of signal time 
course from a particular sensor lies within the time-domain 
signal subspace. While the column space of the signal matrix 
is equal to the spatial domain signal subspace, the row space 
of this matrix is equal to the time-domain signal subspace.

As a review article, this paper does not propose a new 
method, but rather a new way of looking at various existing 
methods in a unified perspective. Actually, using the time-
domain signal subspace, it is possible to interpret various 
interference removal methods as the time domain signal space 
projection. It can be shown that these methods differ only in 
the manner by which they derive the interference subspace. 
These methods rely on some implicit assumptions that are 
generally hidden behind their formulations, but they can be 
revealed by our analysis using the notion of the time domain 
SSP. Such methods include adaptive noise canceling [6, 7], 
sensor noise suppression [8], common temporal subspace pro-
jection [9], spatio-temporal signal space separation [10] and 
the recently-proposed dual signal subspace projection [11].

The paper is organized as follows: After reviewing the con-
ventional (spatial-domain) signal subspace, the time-domain 
signal subspace is defined in section  2. The interference-
removal methods utilizing the spatial-domain signal subspace 
are reviewed in section  3. An important variant of the SSP 
algorithm, the signal space separation (SSS) method [12–14], 
is also reviewed in this section. The time-domain SSP algo-
rithm is introduced in section 4. Section 5 presents interpre-
tations of various existing algorithms as the time-domain 
SSP. Here, we argue how the interference subspace in the 

time domain can be derived by those algorithms. We provide 
numerical examples that illustrate the results of our arguments 
in section 6. The Appendix provides several proofs of math-
ematical arguments, as well as some details of the SSS algo-
rithm needed for readers to follow our arguments.

2.  Signal subspaces in the spatial and time 
domains

2.1.  Sensor array measurements

Biomagnetic measurement is usually conducted using a sen-
sor array, which simultaneously measures the biomagnetic 
signal with multiple sensors. Let us define the measure-
ment of the mth sensor at time t as ym(t). The measurement 
from the whole sensor array is expressed as a column vector 
y(t): y(t) = [y1(t), y2(t), . . . , yM(t)]T . Here, M is the number 
of sensors, and the superscript T indicates the matrix transpose. 
Throughout this paper, plain italics indicate scalars, lower-case 
boldface italics indicate vectors, and upper-case boldface italics 
indicate matrices. The location in the three-dimensional space 
is represented by r: r = (x, y, z). The source magnitude at r and 
time t is denoted as a scalar s(r, t). The source vector is denoted 
s(r, t), and the source orientation is denoted η = [ηx, ηy, ηz]

T . 
We thus have the relationship: s(r, t) = s(r, t)η.

Let us assume that a unit-magnitude source exists at r. When 
this unit-magnitude source is directed in the x, y, and z direc-
tions, the outputs of the mth sensor are respectively denoted 
by lxm(r), lym(r), and lzm(r). Let us define an M × 3 matrix L(r) 
whose mth row is equal to [lxm(r), lym(r), lzm(r)]. This matrix L(r), 
referred to as the lead field matrix, represents the sensitivity of 
the sensor array at r. When the unit-magnitude source at r is 
oriented in the η direction, the outputs of the sensor array are 
expressed as l(r) = L(r)η. This column vector l(r), referred to 
as the lead field vector, represents the sensitivity of the sensor 
array in the direction of η at the location r.

The outputs of the sensor array y(t) are expressed as the 
sum of the signal component yS(t) and the noise ε:

y(t) = yS(t) + ε.� (1)

In equation  (1), yS(t) is called the signal vector, which is 
expressed as:

yS(t) =
∫

Ω

L(r)s(r, t) dr,� (2)

where the integral on the right-hand side is carried out over a 
three-dimensional volume Ω where signal sources of interest 
can exist. This Ω is called the source space. In equation (1), 
an M × 1 random vector ε represents additive sensor noise, 
which is assumed to obey the normal distribution:

p(ε) = N (ε|0, �2I),� (3)

where I  is the identity matrix and �2 is the variance of the 
sensor noise.

We denote the time series outputs of a sensor array 
y(t1), . . . , y(tK), where K is the total number of measured time 
points. It is assumed that K  >  M in this paper. We define the 
measured data matrix B as:
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B = [y(t1), . . . , y(tK)] = [y1, . . . , yK ],� (4)

where y(tj) is denoted yj for simplicity. We also define a 
matrix of the signal vector such that

BS = [yS(t1), . . . , yS(tK)] = [yS
1, . . . , yS

K ],� (5)

where the jth column of BS  is denoted yS
j . This BS  is called 

the signal matrix in this paper. Then, the data model in equa-
tion (1) is expressed in matrix form as:

B = BS + Bε,� (6)

where Bε is the noise matrix whose jth column is equal to the 
noise vector ε at time tj.

2.2.  Definition of signal subspace in the spatial domain

Let us assume that a total of Q discrete sources exist. Their 
locations are denoted by r1, . . . , rQ, their orientations by 
η1, . . . ,ηQ, and their magnitudes by s1(t), . . . , sQ(t). Then, 
the source distribution is expressed as:

s(r, t) =
Q∑

q=1

sq(t)ηqδ(r − rq),� (7)

where δ(r) indicates the delta function. Substituting the 
equation  above into equation  (2), the signal vector yS(t) is 
expressed as:

yS(t) =
∫

Ω

L(r)
Q∑

q=1

sq(t)ηqδ(r − rq) dr =
Q∑

q=1

sq(t)lq,� (8)

where lq represents the lead field vector of the qth source 
obtained such that lq = L(rq)ηq. We assume that the number 
of sources Q is smaller than the number of sensors, i.e. Q  <  M. 
This assumption is referred to as the low-rank signal assump-
tion [5, 15], and we hold this assumption throughout the paper4.

Equation (8) claims that the signal vector yS is expressed as 
a linear sum of the lead field vectors l1, · · · , lQ. That is, the sig-
nal vector yS lies within a subspace spanned by l1, · · · , lQ. The 
subspace spanned by the source lead field vectors l1, · · · , lQ is 
defined as the signal subspace [5], which is denoted by ES, i.e.

ES = csp( [l1, · · · , lQ] ).� (9)

Here, the notation csp(·) indicates the column space of the 
matrix within the parentheses. Equation  (8) indicates the 
relationship,

yS(t) ∈ ES.� (10)

The signal vector lies within the signal subspace, which is the 
subspace formed by all possible signal vectors [1].

2.3.  Definition of signal subspace in the time domain

This section introduces a novel definition of signal subspace 
in the time domain. To do so, we define a row vector sq con-
sisting of the time course of the qth source such that

sq = [sq(t1), . . . , sq(tK)],� (11)

which we call the time course vector of the qth source. We 
then prove that a row of the signal matrix BS  is expressed as a 
linear sum of the time course vectors, s1, . . . , sQ. We assume, 
in this paper, that the source time course vectors s1, . . . , sQ 
are linearly independent. Substituting equation (8) into equa-
tion (5), the following relationship is obtained:

BS =




Q∑
q=1

sq(t1)lq, . . . ,
Q∑

q=1

sq(tK)lq




=




∑Q
q=1[sq(t1), . . . , sq(tK)]l1q

...∑Q
q=1[sq(t1), . . . , sq(tK)]lMq


 =




∑Q
q=1 l1qsq

...∑Q
q=1 lMq sq


 ,

�

(12)

where l1q, . . . , lMq  are the elements of the lead field vector lq: 
lq = [l1q, . . . , lMq ]

T. Denoting the jth row vector of BS  by βS
j , 

equation (12) shows that

βS
j =

Q∑
q=1

l j
qsq.� (13)

This equation indicates that a row vector of the signal matrix, 

βS
j , is expressed as a linear sum of sq (q = 1, . . . , Q). That is, 

we have

βS
j ∈ rsp( [sT

1 , . . . , sT
Q]

T ),� (14)

where the notation rsp(·) indicates a row space of the matrix 
in the parentheses.

Analogous to equations  (9) and (10), it is reasonable 
to define rsp( [sT

1 , . . . , sT
Q]

T ) as the signal subspace in time 
domain KS , i.e.

KS = rsp( [sT
1 , . . . , sT

Q]
T).� (15)

By defining the time domain signal subspace this way, we can 
derive symmetric relationships between the time domain sig-
nal subspace and the spatial domain signal subspace. That is, 
we have already shown the relationships:

column of BS : yS
j ∈ ES,� (16)

row of BS : βS
j ∈ KS.� (17)

We can show that, with the assumption K  >  Q, the column 
space of BS  is equal to the spatial domain signal subspace, i.e.

ES = csp(BS).� (18)

The proof is presented in appendix A.1. With the assumption 
M  >  Q, the row space of BS  is equal to the time domain signal 
subspace, i.e.

KS = rsp(BS).� (19)

The proof is presented in appendix A.2.
4 Since we assume that K  >  M, the assumption K  >  M  >  Q holds throughout 
the paper.
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3.  Interference removal using the spatial-domain 
signal subspace

3.1.  Estimation of spatial-domain signal subspace

Although the signal subspace is defined in equation (9), it is 
difficult to use this equation  to derive the signal subspace, 
because the source lead field vectors are generally unknown5. 
The signal subspace can be estimated using the time series 
measurement of the sensor data y(t) as described in the 
following.

According to equation (18), we can estimate the signal sub-
space through the estimation of the column space of BS . For 
this estimation, let us express the singular value decomposi-
tion of BS  (M  <  K) as:

BS =

M∑
j=1

γS
j uS

j (v
S
j )

T .

Here, the singular values γS
j ( j = 1, . . . , M ) are numbered in 

decreasing order, and uS
j  and vS

j  are the spatial and tempo-
ral singular vectors, respectively. Since BS  is a matrix whose 
rank is equal to Q, the singular values of BS  are given as 
γS

1 , . . . , γS
Q, 0, . . . , 0. Namely, BS  has only Q non-zero singu-

lar values, and the column space of BS  is equal to the span of 
singular vectors corresponding to the non-zero singular val-
ues, uS

1, . . . , uS
Q. That is, we have the relationship

ES = csp( [uS
1, . . . , uS

Q] ).� (20)

Since the signal matrix BS  (and thus its singular vectors) are 
unknown quantities, we cannot use equation (20) to derive the 
signal subspace.

The singular vectors uS
1, . . . , uS

Q are estimated using the sin-
gular vectors of B. Let us denote the spatial singular vectors 
of the data matrix B that correspond to the Q largest singular 
values as u1, . . . , uQ. Then, using the noise model in equa-
tion (3), singular vectors u1, . . . , uQ are asymptotically equal 
to uS

1, . . . , uS
Q. That is, in the limit of infinite number of time 

samples, we have

ES = csp( [u1, . . . , uQ] ).� (21)

The proof is presented in appendix A.4. In the case of a finite 
number of time samples, csp( [u1, . . . , uQ] ) is equal to the 
maximum likelihood estimate of the signal subspace ÊS:

ÊS = csp( [u1, . . . , uQ] ).� (22)

A formal proof of equation  (22) can be found in [15] and 
[16].

3.2.  Signal space projection (SSP) algorithm

The signal space projection (SSP) is an algorithm intended to 
remove the interference overlapped onto the signal [2, 4]. The 
algorithm is based on the theory of signal subspace and the 
measurement model is

y(t) = yS(t) + yI(t) + ε,� (23)

where yI(t) represents the interference overlapped on the sig-
nal vector yS(t). In this paper, this yI(t) represents interfer-
ences originated from outside the source space. The signal 
vector yS(t) represents all signals originated from inside the 
source space6. We assume that a total of P sources generate 
the interference, and yI(t) is thus expressed as

yI(t) =
P∑

p=1

σp(t)ξp,� (24)

where ξp is the lead field vector of the pth interference source 
with its amplitude of σp(t). Note that we still assume that the 
row-rank signal assumption P  +  Q  <  M holds. According to 
equation (9), the interference subspace EI is defined as

EI = csp( [ξ1, . . . , ξP] ).� (25)

The interference subspace can be estimated when the data 
that contain only interference are available. Such data are 
called the control data in this paper, and expressed as

yc(t) = yI(t) + ε,� (26)

and the control data matrix is defined as 
Bc = [yc(t1), . . . , yc(tK)]. The spatial singular vectors of Bc 
that correspond to the P largest singular values are denoted 
by uc

1, . . . , uc
P. The projector onto the interference subspace, 

PI, is formulated such that

PI = [uc
1, . . . , uc

P][u
c
1, . . . , uc

P]
T .� (27)

Since the interference vector yI(t) can be expressed as 

yI(t) =
∑P

j=1 aj(t)uc
j , the relationship (I − PI)yI(t) = 0 

holds. Thus, by projecting the data vector onto the subspace 
orthogonal to the interference subspace, we have:

ŷS(t) = (I − PI)y(t) = yS(t)− PIyS(t) + (I − PI)ε.� (28)

It is apparent from equation (28) that the projector I − PI  
can remove the interference yI(t) but also affects the signal. 
The influence on the signal vector is evaluated by the second 
term on the right-hand side. This term is generally small when 
the orthogonality between lead field vectors of signal sources 
lj ( j = 1, . . . , Q) and the basis vectors of the interference sub-
space uc

i  (i = 1, . . . , P) is high. The method of interference 
suppression based on equation (28) is called the signal space 
projection (SSP) [2, 4]. One problem we have when imple-
menting SSP is the determination of P, the dimension of the 
interference subspace. This P is usually determined by thresh-
olding the singular values. It is obvious from the arguments 
above that the underestimation of P results in a stuation that a 
part of yI(t) remains in ŷS(t) and conversely the overestima-
tion may cause a large distortion of the signal vector yS(t) in 
ŷS(t).

5 To derive the source lead field vectors, we must know the locations and 
orientations of sources. These quantities are generally unknown.

6 Therefore, yS(t) includes interferences originated from inside the source 
space; such interferences include so called brain noise in MEG measure-
ments. In other words, we consider the brain noise as a part of the signal and 
its removal is not argued in this paper.
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3.3.  Signal space separation (SSS) algorithm

A method for deriving the signal subspace based not on the 
span of source lead field vectors but on physical properties of 
the magnetic field predicted by Maxwell’s equations has been 
proposed [12–14, 17]. In this method, assuming that there are 
no sources in a region where sensors are located (a region 
called the sensor region), the sensor measurements can be 
expressed by an expansion using the vector spherical harmon-
ics, which contains natural separation between the magnetic 
fields generated from the internal and external regions. Here, 
the internal region indicates the region closer to the origin 
than the sensor region, and the external region indicates the 
region farther from the origin than the sensor region.

Therefore, if the origin is properly set such that the source 
space Ω is included within the internal region, and the interfer-
ence sources are located within the external region, the signal 
can be separated from the interference. Interference removal 
based on this idea is called signal space separation (SSS). The 
derivation of the SSS method is presented in the appendix B.

With the proper setting of the origin, we can derive the SSS 
signal extractor ΓS:

ΓS = CCT(CCT + DDT)−1 = CCT(SST)−1,� (29)

where the matrices C and D are given respectively in equa-
tions (B.9) and (B.10), and S = [C, D]. Note that C and D are 
M × NC and M × ND matrices where NC and ND are defined in 
equation (B.14). The derivation of ΓS is presented in appendix 
B.2. We use the data model in equation (23), and assume that 
equation (8) holds for yS(t) and equation (24) for yI(t). Then, 
multiplying the signal extractor ΓS to the data vector y(t) gives

ΓSy(t) = ΓSyS(t) + ΓSyI(t) =
Q∑

q=1

sq(t)ΓSlq +

P∑
p=1

σp(t)ΓSξp,

� (30)
where the sensor noise term is dropped for simplicity.

The assumption that the source space Ω is located within 
the internal region leads to the relationship

csp(C) ⊃ ES.

Thus, the lead field vector of a signal source lq lies within the 
column space of C, and lq is expressed as a linear sum of the 
column vectors of C, such that

lq =

NC∑
j=1

αjcj = Cα,� (31)

where cj is the jth column of C, αj is the jth expansion coeffi-
cient, and α is a column vector containing the coefficients, i.e. 
α = [α1, . . . ,αNC ]

T . Thus, denoting an ND × 1 column vector 
whose elements are all zero by 0, and using the derivation in 
equation (B.20), we can derive the relationship

ΓSlq = ΓSCα = ΓSS
[
α

0

]
= C

[
CT(SST)−1S

[
α

0

]]

= C
[

ST(SST)−1S
[
α

0

]]

[1:NC]

≈ C
[
(STS)−1STS

[
α

0

]]

[1:NC]

= Cα = lq.
� (32)

The equation above indicates that the SSS signal extractor ΓS 
passes the signal-source lead field vector lq with no distortion.

The assumption that all the interference sources are located 
within the external region leads to the situation that the col-
umn space of D includes the interference subspace, i.e.

csp(D) ⊃ EI .

Therefore, the lead field vector of an interference source ξp 
lies within the column space of D, and ξp is expressed as

ξp =

ND∑
j=1

φjdj = Dφ,� (33)

where dj  is the jth column of D, φj is the jth expansion 
coefficient, and φ is a column vector containing these coef-
ficients: φ = [φ1, . . . ,φND ]

T . Again denoting the NC × 1 col-
umn vector whose elements are all zero by 0, we have the 
relationship

ΓSξq = ΓSDφ = ΓSS
[

0
φ

]
≈ C

[
(STS)−1STS

[
0
φ

]]

[1:NC]

= C0 = 0.

� (34)
The equation above indicates that the signal extractor ΓS com-
pletely blocks the lead field vector of an interference source 
ξq. Consequently, substituting (32) and (34) into (30), we 
obtain

ΓSy(t) = ΓSyS(t) + ΓSyI(t) =
Q∑

q=1

sq(t)ΓSlq

+

P∑
p=1

σp(t)ΓSξp =

Q∑
q=1

sq(t)lq = yS(t).

�

(35)

The equation  above shows that by multiplying the signal 
extractor ΓS with the data vector y(t), the signal vector yS(t) 
is selectively extracted with no distortion. This distortionless 
signal extraction is a major advantage of the SSS algorithm 
over the SSP algorithm.

4. Time-domain signal space projection

If we obtain the basis vectors of the interference subspace in 
the time domain, it is possible to remove the interference by 
projecting the measured data onto the subspace orthogonal to 
the time-domain interference subspace. We define the interfer-
ence matrix BI  as

BI = [yI(t1), . . . , yI(tK)].� (36)

Then, the data model in equation (23) is expressed as

B = BS + BI + Bε.� (37)

Let us define the time course vector of the pth interference 
source, σp, as

σp = [σp(t1), . . . ,σp(tK)].� (38)

Then, the interference subspace in the time domain, KI , is 
defined as

KI = rsp( [σT
1 , . . . ,σT

P]
T ).� (39)
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We assume that time course vectors σT
1 , . . . ,σT

P  are linearly 
independent in this paper.

If basis row vectors of the interference subspace in the 
time domain are estimated as ψ1, . . . ,ψP, defining Υ as 
Υ = [ψT

1 , . . . ,ψT
P]

T , we can compute the projector onto KI  
such that

ΠI = ΥT(ΥΥT)−1Υ.� (40)

We denote the jth row of BI  by βI
j . Since βI

j  is expressed 
as the linear sum of ψj: β

I
j =

∑P
j=1 cjψj, we thus have 

βI
j (I −ΠI) = 0. Therefore, projecting the data matrix B onto 

the subspace orthogonal to KI , the estimated signal matrix B̂S  
is given by

B̂S = B(I −ΠI) = (BS + BI + Bε)(I −ΠI)

= BS − BSΠI + Bε(I −ΠI).
�

(41)

The method of removing the interference BI  based on 
equation (41) is referred to as the time-domain signal space 
projection (time-domain SSP). The influence of the time 
domain SSP on the signal component is assessed by the sec-
ond term BSΠI  on the right-hand side of equation (41). This 
term becomes small when the correlations between the time 
courses of the signal and interference sources are small. This 
can be considered an advantage of the time-domain SSP over 
the spatial-domain SSP. This is because in many real-life 
applications, the time courses of the signal and interference 
sources are expected to differ significantly, but the orthogo-
nality of lead field vectors between signal and interference 
sources may not be so high. In the next section, we show that 
a number of existing interference removal methods can be 
interpreted as the time domain SSP, and that these methods 
differ only in their manner of deriving the basis vectors of the 
time-domain interference subspace.

5.  Interference removal based on the time-domain 
SSP

5.1.  Adaptive noise canceling(ANC)

Adaptive noise canceling(ANC) is an interference removal 
method which makes use of data from reference sensors. The 
reference sensors collect data containing interference but not 
the signal of interest [6, 7, 18]. It is assumed that the sensor 
array is equipped with a total of J additional reference sensors, 
and the outputs of the reference sensors are denoted by a J × 1 
column vector yR(t). Then, the data model is expressed as

y(t) = yS(t) + yI(t) + ε,� (42)

yR(t) = ỹI(t) + ε̃.� (43)

Note that y(t), yS(t), yI(t) and ε are M × 1 column vectors, 
and yR(t), ỹI(t), and ε̃ are J × 1 column vectors. ANC tries to 
remove the interference yI(t) from the data vector y(t) by tak-
ing out components maximally correlated with the reference 
sensor data yR(t). This removal is carried out by regressing 
y(t) with yR(t), i.e.

y(t) = ZyR(t) + d(t),� (44)

where Z is an M × J coefficient matrix of this multi-variate 
regression, and the residual signal d(t) represents the inter-
ference removed results. Here, the coefficient matrix Z is 
obtained by solving the minimization problem:

Z = argmin
Z

〈‖y(t)− ZyR(t)‖2〉,� (45)

where 〈·〉 indicates time average. That is, Z is determined so 
as to maximize the correlation between y(t) and yR(t). The 
interference-removed results are expressed as:

d(t) = y(t)− ẐyR(t) = y(t)− 〈y(t)yT
R(t)〉

[
〈yR(t)y

T
R(t)〉

]−1 yR(t).
�

(46)
To understand the relationship between ANC and the time-

domain SSP, Let us rewrite equation (46) using a matrix form. 
To do so, the matrix of the reference sensor data is defined as 
BR, such that

BR = [yR(t1), . . . , yR(tK)].

Using the data matrices of BR and B, we have

〈 y(t)yT
R(t)〉 =

1
K

BBT
R, and 〈yR(t)y

T
R(t)〉 =

1
K

BRBT
R.� (47)

Thus, denoting the interference removed results as B̂S : 
B̂S = [d(t1), . . . , d(tK)], equation (46) is rewritten as

B̂S = B − BBT
R

(
BRBT

R

)−1 BR

= B
[
I − BT

R

(
BRBT

R

)−1 BR

]
= B [I −ΠR] ,

�
(48)

where ΠR indicates the projector onto the row space of BR 
defined such that

ΠR = BT
R

(
BRBT

R

)−1 BR.� (49)

Comparison between equations  (41) and (48) makes it 
clear that ANC is equivalent to the time-domain SSP if the 
relationship ΠI ≈ ΠR holds where ΠI is the projector onto 
the interference subspace defined in equation (40). Actually, 
if the sensor noise is small, the row space of BR can reason-
ably approximate the row space of BI , which is equal to the 
interference subspace under the low rank signal assumption 
J  >  Q. However, when the sensor noise is not negligibly small 
or when the reference sensor data contains components not 
contained in the measurement sensor data, ΠR and ΠI may 
have some difference, and results from the ANC algorithm 
may contain errors.

5.2.  Common temporal subspace projection (CTSP)

Common temporal subspace projection (CTSP) also removes 
the interference by making use of the reference sensor data [9]. 
The difference between CTSP and ANC is that CTSP assumes 
that the reference sensor data contain components that exist 
only in the reference sensor data but not in the measurement 
sensor data. The data model assumed in CTSP is expressed as

B = BS + BI + Bε,� (50)
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BR = B̃I + Bw + B̃ε,� (51)

where a J × K  matrix Bw indicates the components that are 
contained only in the reference sensor data, and J × K  matri-
ces, B̃I  and B̃ε, are the interference and noise matrices of the 
reference sensor data. Here, we assume BwBT

S = 0. According 
to the arguments in appendix A.5, equation (50) leads to the 
relationship,

rsp(B) = rsp(BS + BI + Bε) ⊂ rsp(BS)

+ rsp(BI) + rsp(Bε) = KS +KI +Kε,
�

(52)

where Kε indicates Kε = rsp(Bε). Equation (51) leads to

rsp(BR) = rsp(B̃I + Bw + B̃ε) ⊂ rsp(B̃I)

+ rsp(Bw) + rsp(B̃ε) = KI +Kw + K̃ε,
�

(53)

where Kw and K̃ε indicate Kw = rsp(Bw) and K̃ε = rsp(B̃ε). 
The relationships rsp(BS) = KS  and rsp(BI) = rsp(B̃I) = KI  
are used here. Then, according to the arguments in appendix 
A.6, equations  (52) and (53) lead to the following relation-
ships among sets of basis vectors:

SB ⊂ SS ∪ SI ∪ Sε� (54)

SBR ⊂ SI ∪ Sw ∪ S̃ε� (55)

where sets of basis vectors of rsp(B) and rsp(BR) are respec-
tively denoted by SB, SBR, i.e. rsp(B) = span(SB) and 
rsp(BR) = span(SBR)

7. Also, sets of basis vectors of KS , KI , 
Kw, Kε, and K̃ε are respectively denoted by SS, SI, Sw, Sε, 
and S̃ε.

We assume that the noise time courses are orthogo-
nal to each other, and they are orthogonal to the signal and 
interference time courses, resulting in the relationships: 
Sε ∩ S̃ε = ∅, Sε ∩ SS = Sε ∩ SI = Sε ∩ Sw = ∅, and 
S̃ε ∩ SS = S̃ε ∩ SI = S̃ε ∩ Sw = ∅. Here ∅ indicates the 
empty set. We also use SS ∩ Sw = ∅, which results from the 
orthogonality assumption BwBT

S = 0. Then, using the proof 
in appendix A.7 and the distributive property, we can derive

SB ∩ SBR ⊂ (SS ∪ SI ∪ Sε) ∩ (SI ∪ Sw ∪ S̃ε)

= [SS ∩ (SI ∪ Sw ∪ S̃ε)] ∪ [SI ∩ (SI ∪ Sw ∪ S̃ε)] ∪ [Sε ∩ (SI ∪ Sw ∪ S̃ε)]

= (SS ∩ SI) ∪ SI ∪ ∅ = (SS ∩ SI) ∪ SI = SI .
�

(56)

Namely,

SI ⊃ SB ∩ SBR� (57)

holds. According to the arguments in appendix A.8, we can 
obtain the relationship,

KI = span(SI) ⊃ span(SB ∩ SBR) = span(SB) ∩ span(SBR)

= rsp(B) ∩ rsp(BR).
�

(58)

The equation  above claims that the intersection between 
rsp(B) and rsp(BR) forms a subset of the interference subspace 
KI . An algorithm that derives basis vectors of the intersection 

between two subspaces is described in appendix A.9. Using 
this algorithm, the orthonormal basis vectors of the intersec-
tion rsp(B) ∩ rsp(BR) can be obtained. Denoting these basis 
vectors as ψ1, . . . ,ψr , we can remove the interference and 
obtain the estimated signal matrix B̂S  such that

B̂S = B(I − [ψ1, . . . ,ψr][ψ1, . . . ,ψr]
T).� (59)

The time domain SSP in equation  (59) cannot perfectly 
remove the interference because the basis vectors ψ1, . . . ,ψr  
span only a part of the interference subspace. Nonetheless, we 
can still expect that the method can reduce the interference 
if rsp(B) ∩ rsp(BR) is a reasonable approximation of KI . The 
algorithm that performs the interference removal in a manner 
described above is called common temporal subspace projec-
tion (CTSP) [9].

5.3.  Dual signal subspace projection (DSSP)

5.3.1.  Pseudo signal subspace projector.  Dual signal sub-
space projection (DSSP) removes the interference without 
using either the reference sensor data or control data such 
as the empty-room-noise data [11]. The algorithm assumes 
the data model in equation (50) with the assumption that the 
interference sources are located outside the source space. The 
DSSP algorithm uses the so-called pseudo signal subspace 
projector, and to derive it, voxels are defined over the source 
space Ω, in which the voxel locations are denoted r1, . . . , rN . 
The pseudo signal subspace ĔS is defined such that

ĔS = csp( [L(r1), . . . , L(rN)] ).� (60)

If the voxel interval is sufficiently small and voxel discretiza-
tion errors are negligible, we have the relationship ĔS ⊃ ES. 
Therefore, a vector contained in the signal subspace is also con-
tained in the pseudo signal subspace, i.e. if x ∈ ES, then x ∈ ĔS.

Let us derive the orthonormal basis vectors of the 
pseudo signal subspace ĔS. To do so, defining a matrix F 
as F = [L(r1), . . . , L(rN)], we compute the singular value 
decomposition of F,

F =

M∑
j=1

λjej f T
j ,� (61)

where we assume the relationship M  <  N. If the singular 
values λ1, . . . ,λτ  are distinctively large, and other singular 
values λτ+1, . . . ,λM are nearly equal to zero, the singular vec-
tors e1, . . . , eτ  forms orthonormal basis vectors of the pseudo 
signal subspace ĔS and the projector onto ĔS is obtained using

P̆S = [e1, . . . , eτ ][e1, . . . , eτ ]T .� (62)

Note that, since ĔS ⊃ ES, the orthogonal projector (I − P̆S)  
projects out the signal vector, i.e. (I − P̆S)yS(t) = (I − P̆S) 
BS = 0.

5.3.2.  DSSP algorithm.  The DSSP algorithm applyies P̆S 
and I − P̆S to the data matrix B to create two kinds of data 
sets:

P̆SB = BS + P̆SBI + P̆SBε,� (63)7 Here, an expression of X = span(SX) indicates that a set of basis vectors 
SX spans the subspace X .
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(I − P̆S)B = (I − P̆S)BI + (I − P̆S)Bε.� (64)

In equation (64), the signal of interest is suppressed by mul-
tiplying (I − P̆S) with the data matrix, and a virtual refer-
ence time series is estimated8. Here, we use P̆SBS = BS and 
(I − P̆S)BS = 0. According to the arguments in appendix A.5, 
the following relationships hold:

rsp(P̆SB) ⊂ rsp(BS) + rsp(P̆SBI) + rsp(P̆SBε),� (65)

rsp((I − P̆S)B) ⊂ rsp((I − P̆S)BI) + rsp((I − P̆S)Bε).� (66)

The arguments in appendix A.3 prove that the relationships, 
rsp(P̆SBI) = KI  and rsp((I − P̆S)BI) = KI  hold. Thus, using 
rsp(BS) = KS , equations (65) and (66) lead to

rsp(P̆SB) ⊂ KS +KI + K̆ε,� (67)

rsp((I − P̆S)B) ⊂ KI + K̆′
ε,� (68)

where we use the notations, rsp(P̆SBε) = K̆ε and 
rsp((I − P̆S)Bε) = K̆′

ε. Let us define the sets of basis 
vectors of rsp(P̆SB) and rsp((I − P̆S)B) as SPS and SPI ,  
(i.e. rsp(P̆SB) = span(SPS) and rsp((I − P̆S)B) = span(SPI )). 
According to the arguments in appendix A.6, equations (67) 
and (68) can be converted into relationships among the sets of 
basis vectors, which are written as

SPS ⊂ SS ∪ SI ∪ S̆ε,� (69)

SPI ⊂ SI ∪ S̆ ′
ε,� (70)

where basis vector sets of K̆ε and K̆′
ε are denoted S̆ε and S̆ ′

ε.
Since the relationship

P̆SBε((I − P̆S)Bε)
T = P̆SBεBT

ε(I − P̆S) = ρ2P̆S(I − P̆S) = 0,

holds, S̆ε and S̆ ′
ε has no intersection, i.e. 

S̆ε ∩ S̆ ′
ε = ∅. Also, assuming that BSBT

ε = BIBT
ε = 0, the rela-

tionships S̆ε ∩ SS = S̆ε ∩ SI = ∅ and S̆ ′
ε ∩ SS = S̆ ′

ε ∩ SI = ∅ 
hold. Therefore, using the proof in appendix A.7 and the dis-
tributive property, we can derive the following relationship:

SPS ∩ SPI ⊂
[
SS ∪ SI ∪ S̆ε

]
∩
[
SI ∪ S̆ ′

ε

]

=
[
SS ∩ (SI ∪ S̆ ′

ε)
]
∪
[
SI ∩ (SI ∪ S̆ ′

ε)
]
∪
[
S̆ε ∩ (SI ∪ S̆ ′

ε)
]

= (SS ∩ SI) ∪ SI ∪ ∅ = (SS ∩ SI) ∪ SI = SI .
�

(71)

Namely, we have

SI ⊃ SPS ∩ SPI .� (72)

According to the arguments in appendix A.8, we derive

KI = span(SI) ⊃ span(SPS ∩ SPI ) = span(SPS) ∩ span(SPI )

= rsp(P̆SB) ∩ rsp((I − P̆S)B).
�

(73)

The quation above shows that the intersection between 
rsp(P̆SB) and rsp((I − P̆S)B) forms a subset of the 

interference subspace KI . The basis vectors of the inter-
section are derived using the algorithm described in 
appendix A.9. Once the orthonornal basis vectors of the 
intersection rsp(P̆SB) ∩ rsp((I − P̆S)B) are obtained, we 
can compute the projector onto the intersection, and 
time-domain SSP can be implemented. If the intersection 
rsp(P̆SB) ∩ rsp((I − P̆S)B) is a reasonable approximation of 
KI , this time-domain SSP will be able to remove interfer-
ences effectively. The method of removing the interference 
in a manner as described above is called dual signal sub-
space projection (DSSP) [11].

Note that since the intersection rsp(P̆SB) ∩ rsp((I − P̆S)B) 
is only a subset of the interference subspace KI , the method 
cannot perfectly remove interferences. However, we can 
observe that rsp(P̆SB) ∩ rsp((I − P̆S)B) becomes a better 
approximation of KI , if the interference BI  is significantly 
greater than the signal BS  (and the sensor noise Bε), result-
ing in a situation that the interference terms are dominated in 
P̆SB and (I − P̆S)B. This may explain our empirical findings, 
which are a little counter-intuitive, that the method works bet-
ter for larger interferences.

5.4.  Spatio-temporal signal space separation (tSSS)

In section  3.3, we argue that one prerequisite of the signal 
space separation (SSS) algorithm is that all interference 
sources be located in the external region. However, this 
requirement is not always fulfilled, as interference sources can 
also be located fairly close to the source space. In this case, the 
SSS extractor ΓS cannot adequately remove the interference. 
Spatio-temporal signal space separation algorithm (tSSS) has 
been developed for such situations [10].

This algorithm first applies the SSS extractors ΓS and ΓI to 
the data matrix B to create two kinds of data sets:

ΓSB = BS + ΓSBI + ΓSBε,� (74)

ΓIB = ΓIBI + ΓIBε,� (75)

where we use the relationships, ΓSBS = BS, and ΓIBS = 0. We 
thus obtain,

rsp(ΓSB) ⊂ KS + rsp(ΓSBI) + rsp(ΓSBε),� (76)

rsp(ΓIB) ⊂ rsp(ΓIBI) + rsp(ΓIBε),� (77)

where we use rsp(BS) = KS .
When an interference source is located close to the source 

space, the lead field vector of this source, ξp, may have comp
onents expanded by the columns of C, as well as components 
expanded by the columns of D, resulting in,

ξp = Cα′ + Dφ′,� (78)

where α′ and φ′ are vectors containing the expansion coef-
ficients. Therefore, by multiplying the SSS signal extractor to 
ξp, we have

ΓSξp = ΓS
[
Cα′ + Dφ′] = Cα′ = πp,� (79)8 This procedure is called the generalized sidelobe canceller in [19].
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which shows that ΓS changes the interference lead field from 
ξp to πp. Similarly, by applying ΓI to ξp, we have

ΓIξp = ΓI
[
Cα′ + Dφ′] = Dφ′ = π̃p,� (80)

which shows that the lead field ξp is changed to π̃p.

However, these extractors never change the time courses 
of interference sources. Thus, using the same arguments as 
in appendix A.3, we can prove that rsp(ΓSBI) = KI  and 
rsp(ΓIBI) = KI hold, and equations (76) and (77) become

rsp(ΓSB) ⊂ KS +KI +K′
ε,� (81)

rsp(ΓIB) ⊂ KI +K′′
ε .� (82)

Sets of basis vectors of rsp(ΓSB) and rsp(ΓIB) are respectively 
denoted by SΓS and SΓI. Then, according to the arguments in 
appendix A.6, we can obtain

SΓS ⊂ SS ∪ SI ∪ S ′
ε,� (83)

SΓI ⊂ SI ∪ S ′′
ε ,� (84)

where sets of basis vectors of KS , KI , K′
ε, and K′′

ε  are respectively 
denoted by SS, SI, S ′

ε, and S ′′
ε . Asumuing that relationships, 

Figure 1.  An arrangement of the 275-channel whole-head sensor array of the OmegaTM (VMS Medtech, Coquitlam, Canada) 
neuromagnetometer used in our numerical experiments. Locations of sensors are indicated by filled circles. Locations and orientations of 
six reference sensors consisting of two sets of vector magnetometers are shown. Here, (a), (b) and (c), respectively, show coronal, axial, 
and sagittal views of the sensor arrangement. Note that the arrangement of the reference sensors was assumed solely for our numerical 
experiments, and differs from the true arrangement in the Omega neuromagnetometer system.

Figure 2.  (a) Time course of the signal source assumed in our 
numerical experiments. The time t is expressed with the unit of time 
point ranging from t  =  −1200 to 1200. The broken vertical line 
indicates the time point at t  =  520. The field maps at this time point 
are shown in the following figures. (b) Time courses of the four 
interference sources assumed in our numerical experiments.

Table 1.  Locations of interference sources assumed in numerical 
experiments.

Source number Location (cm)
Distance from 
signal source (cm)

1 (100, −30, −500) 510
2 (5, −50, 600) 600
3 (−27, −495, 21) 500
4 (755, −342, 37) 830

1 (10, 30, 30) 41
2 (5, −20, −30) 39
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Figure 3.  (a) Time courses of the signal magnetic field with Gaussian noise with the signal-to-noise ratio (SNR) equal to 32. (b) The 
magnetic field map of the signal magnetic field at t  =  520. (c) Time courses of interference-overlapped sensor data with the interference-to-
signal ratio (ISR) equal to 6. (d) The magnetic field map of the interference overlapped sensor data at t  =  520.

Figure 4.  (a) Simulated empty-room noise data used in the SSP interference removal experiments. (b) Sensor time courses of the SSP 
interference-removal results. (c) Magnetic field map of the SSP interference removal results. The map at t  =  520 is shown.
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SS ∩ S ′′
ε = SI ∩ S ′′

ε = ∅, and SI ∩ S ′
ε = S ′′

ε ∩ S ′
ε = ∅ hold, 

we can finally obtain

SI ⊃ SΓS ∩ SΓI ,� (85)

and according to the arguments in appendix A.8, we derive the 
relationship:

KI ⊃ rsp(ΓSB) ∩ rsp(ΓIB).� (86)

The basis vectors of the intersection rsp(ΓSB) ∩ rsp(ΓIB) are 
obtained using the algorithm in appendix A.9, and they can be 
used for forming the projector onto the interference subspace. 
Making use of the interference subspace projector obtained 
in this manner, the tSSS algorithm performs the time-domain 
SSP for interference removal. Again, although these basis 
vectors span only a subset of the interference subspace, the 
method can effectively remove the interference if the intersec-
tion rsp(ΓSB) ∩ rsp(ΓIB) is a reasonable approximation of KI . 
One such case is that the interference terms are dominated in 
the data sets ΓSB and ΓIB.

5.5.  Sensor noise suppression (SNS)

The sensor noise suppression (SNS) algorithm has been devel-
oped to suppress sensor noise [8]. The algorithm assumes the 
data model

B = BS + Bε.� (87)

A key assumption of the SNS algorithm is that βj, the jth row 
of B, lies within a span of all the rows of B except the jth 
row, i.e.

βj ∈ rsp( [βT
1 , . . . ,βT

j−1,βT
j+1, . . . ,βT

M]
T ).� (88)

Thus, βj is expressed as the linear sum of the other rows:

βT
j =

∑
i�=j

ωiβ
T
i = Θjωj,� (89)

where

Θj =
[
βT

1 , . . . ,βT
j−1,βT

j+1, . . . ,βT
M

]
,� (90)

ωj = [ω1, . . . ,ωj−1,ωj+1, . . . ,ωM]
T .� (91)

In the equations  above, the notation 
∑

i�=j indicates 
the summation from i  =  1 to M, except i  =  j, and ωi  
(i = 1, . . . , j − 1, j + 1, . . . , M) are weights of the linear 
summation.

The optimum weight, ω̂j, can be obtained using least 
squares fitting:

ω̂j = argmin
ωj

‖βT
j −Θjωj‖2.

The solution is

ω̂j =
(
ΘT

j Θj
)−1

ΘT
j β

T
j .� (92)

This ω̂j is substituted into equation (89), and the denoised row 

β̂j is obtained as

β̂j = βjΘj
(
ΘT

j Θj
)−1

ΘT
j .� (93)

It can be seen in equation (93) that the sensor noise suppres-
sion algorithm is the time-domain SSP, assuming that rsp(Θj) 

approximates the time-domain signal subspace KS  and the pro-

jector Θj
(
ΘT

j Θj
)−1ΘT

j  approximates the projector onto KS .
When the number of sensors are large, rsp(Θj) should 

reasonably approximate rsp(B). When the sensor noise is 
negligibly small, rsp(B) then approximates rsp(BS), which is 

equal to KS , resulting in the projector Θj
(
ΘT

j Θj
)−1ΘT

j  that 
approximates the projector onto KS . However, when the sen-
sor noise is not small, (which is exactly the case where the 
SNS algorithm is needed,) rsp(B) differs from rsp(BS), and 

the projector Θj
(
ΘT

j Θj
)−1ΘT

j  may differ from the signal 
subspace projector, resulting in the low performance of the 
SNS algorithm in such cases.

6.  Numerical examples

6.1.  Data generation

A series of computer simulations were carried out to provide 
illustrative examples of the results of our arguments in the 
preceding sections. A sensor alignment of the 275-channel 
whole-head sensor array from the OmegaTM (VMS Medtech, 
Coquitlam, Canada) neuromagnetometer was used. The con-
figuration of the sensor array arranged on the helmet surface 
is shown in figure 1, in which the filled circles indicate the 
locations of sensors. In our experiments, all these sensors 
were assumed to be magnetometers. We assumed six refer-
ence sensors, consisting of two sets of vector magnetometers 
in addition to the measurement sensors on the helmet, and the 
reference sensor arrangement is shown also in figure 19.

Figure 5.  (a) Time courses of reference sensor data used in ANC 
and CTSP interference-removal experiments of which results 
are shown in figure 6. (b) Time courses of reference sensor data 
containing a large additive fluctuation. The data were used in ANC 
and CTSP interference removal experiments of which results are 
shown in figure 7.

9 Note that this arrangement of the reference sensors is assumed solely for 
our numerical experiments, and differs from the true arrangement in the 
Omega neuromagnetometer system.
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A single dipole source, which generated the signal magnetic 
field, was assumed to exist at (0,0,10) with the orientation of 
(1,1,0). The location was 7 cm below the center of the sensor 
array. The time course assigned to this source is shown in fig-
ure 2(a). In our numerical experiments, the time t is expressed 
with the unit of time points ranging from t  =  −1200 to 1200. 
We assumed four interference sources whose coordinates are 
listed in the top four rows of table 1, which indicates that these 
interference sources were 500–800 cm away from the signal 
source. The time courses assigned to these four interference 
sources are shown in figure 2(b).

Sensor time courses were generated by projecting the 
source time course in figure  2(a) onto the sensor time 
courses through the lead field computed using Sarvas’ form
ula [20]. The sensor time courses of the signal magnetic 
field (after adding sensor noise) are shown in figure  3(a). 
The magnetic field map across sensors at t  =  520 is shown 
in figure 3(b). (The instant at t  =  520 is shown by the bro-
ken vertical line in figure 2(a).) Note that the sensor time 
courses in figure 3(a) and the field map in figure 3(b) can 
work as the ground truth in interference removal experi-
ments described below.

Also, the time courses of the interference sources in fig-
ure 2(b) were converted to the sensor time courses of the inter-
ference using the lead field computed from the Biot–Savart 
law [18, 20]. The use of the Biot–Savart law here is due to 
our assumption that these interference sources are non-biolog-
ical sources. The interference magnetic field was overlapped 

onto the signal magnetic field with the interference-to-signal 
ratio (ISR) equal to 6. Here, the ISR is defined as ‖BI‖/‖BS‖ 
where ‖X‖ indicates the Frobenius norm of a matrix X. The 
interference-overlapped sensor time courses are shown in fig-
ure 3(c). Since the interference is much stronger than the sig-
nal magnetic field, the sensor time courses are dominated by 

Figure 6.  Results of ANC and CTSP interference removal experiments. The reference sensor data used in the experiments are shown in 
figure 5(a). (a) Sensor time courses of ANC interference removal results. (b) Magnetic field map of the ANC interference-removal results. 
(c) Sensor time courses of CTSP interference removal results. (d) Magnetic field map of the CTSP interference-removal results. The field 
maps at t  =  520 are shown for (b) and (d).

Figure 7.  Results of ANC and CTSP interference removal 
experiments when the reference sensor data shown in figure 5(b) 
were used. (a) Sensor time courses of ANC interference-removal 
results. (b) Sensor time courses of CTSP interference-removal 
results.
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the interference. The magnetic field map of the interference-
overlapped sensor data is shown in figure 3(d).

6.2.  Results of interference removal experiments

6.2.1.  Experiments on signal space projection (SSP).  We 
applied the signal space projecton (SSP) algorithm described 
in section 3.2 to the interference-overlapped sensor data in 
figure 3(c). The SSP algorithm requires control data, (which 
contain only interference) to estimate the interference sub-
space. Such control data, generated using a set of different 
interference-source time courses, are shown in figure  4(a). 
The results of SSP interference removal are shown in fig-
ure  4(b), indicating that the interference has been largely 
removed. The field map of the interference-removed sensor 
data is shown in figure  4(c). The comparison between the 

resultant field map in figure 4(c) and the map of the signal-
only magnetic field in figure 3(b) indicates that a considerable 
amount of signal distortion occurs in the SSP interference-
removed results.

6.2.2.  Experiments on adaptive noise canceling (ANC) and 
common temporal subspace projection (CTSP).  Adaptive 
noise canceling (ANC) and common temporal subspace pro-
jection (CTSP) were applied to the same interference-over-
lapped sensor data in figure  3(c). In these experiments, the 
reference sensor data shown in figure 5(a) were used, and the 
interference removal results are shown in figure 6. According 
to the resultant sensor time courses in figures  6(a) and (c), 
these methods removed most of the interference. The maps of 
the interference-removed results in figures 6(b) and (d) indi-
cate that almost no signal distortion was caused.

Figure 8.  Results of SSS interference-removal experiments. (a) Sensor time cources of SSS interference removal results. (b) Magnetic field 
map of the SSS interference removal results. The map at t  =  520 is shown

Figure 9.  (a) Sensor time courses of interference-overlapped data generated with nearby interference sources. (b) Magnetic field map of 
the interference-overlapped data in (a). (c) Sensor time courses of SSS interference removal results obtained from the sensor data in (a). (d) 
Magnetic field map of the interference removal results obtained from the sensor data in (a). The maps at t  =  520 are shown for (b) and (d).
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Next, we performed experiments in which the reference 
sensor data contained, in addition to the interference, a fluc-
tuation that did not exist in the data from the measurement 
sensors arranged on the helmet. In these experiments, the ref-
erence sensor data shown in figure 5(b) were used, and the 
results of ANC interference removal are shown in figure 7(a). 
These results show that a fairly large amount of interference 
remained due to the incorrect reference sensor data. The 
results of CTSP interference removal are shown in figure 7(b). 
Here, the interefernce was nearly completely removed despite 
the fact that the reference sensor data contained an additional 
component. This is because the data model of the CTSP algo-
rithm allows components to exist only in the reference data 
but not in the measured data.

6.2.3.  Experiments on signal space separation (SSS).  The 
signl space separation (SSS) algorithm was tested on the 
interference-overlapped sensor data in figure 3(c). This algo-
rithm requires neither control noise data nor reference sensor 
data. It solely relies on the spatial separation between signal 
and intereference sources. The resultant interference-removed 
sensor time courses are shown in figure 8(a), and the field map 
of these sensor data at t  =  520 is shown in figure 8(b). These 
results show that the SSS algorithm nearly perfectly removed 
the interference. This is because the prerequisite of the SSS 
method, the conditions that signal sources be located within 
the internal region, and interference sources be located within 

the external region, was nearly perfectly satisfied in these 
numerical experiments.

We then moved two of the interference sources closer to 
the signal source by assigning the coordinates in the last two 
rows of table 1 to these sources. The distances between the 
new locations of the two interference sources and that of the 
signal source were approximately 40 cm, and the spatial sepa-
ration between the signal and intereference sources could be 
insufficient. The sensor data overlapped by the interference, 
generated from the nearby interference sources, are shown 
in figure 9(a), and the field map is shown in figure 9(b). The 
SSS algorithm was applied to these interference-overlapped 
data, and the results are shown in figures 9(c) and (d). In these 
experiments, the SSS method failed to remove the interef-
erence. This is because the two interference sources were 
located fairly close to the signal source, resulting in the viola-
tion of the prerequisite for the SSS method.

6.2.4.  Experiments on spatio-temporal signal space separa-
tion (tSSS) and dual signal subspace projection (DSSP).  The 
spatio-temporal signal space separation (tSSS) algorithm was 
applied to the interference-overlapped sensor data in fig-
ure  3(c), and to the nearby interference data in figure  9(a). 
The interference-removed results are shown in figure  10. 
The results demonstrate that the tSSS algorithm can effec-
tively remove the interferences not only caused by distant 
sources but also caused by nearby sources. The field maps in 

Figure 10.  Results of tSSS interference removal experiments. (a) Sensor time courses of interference removal results obtained using the 
interference-overlapped data in figure 3(c). (b) Magnetic field map of the interference removal results in (a). (c) Sensor time courses of 
interference removal results obtained using the nearby-interference data in figure 9(a). (d) Magnetic field map of the interference removal 
results. The maps at t  =  520 are shown for (b) and (d).

J. Neural Eng. 14 (2017) 051001



Topical Review

15

Figure 11.  Results of DSSP interference removal experiments. (a) Sensor time courses of interference removal results obtained using 
the interference-overlapped data in figure 3(c). (b) Magnetic field map the interference removal results in (a). (c) Sensor time courses of 
interference removal results obtained using the nearby-interference data in figure 9(a). (d) Magnetic field map of the interference removal 
results in (c). The maps at t  =  520 are shown for (b) and (d).

Figure 12.  Results of SNS denoising experiments. (a) Sensor time courses of signal plus Gaussian noise data generated for SNS denoising 
experiments. The signal-to-noise ratio (SNR) was set at 10. (b) Magnetic field map of the generated sensor data. (c) Sensor time courses of 
denoised results. (d) Magnetic field map of the denoised results. The maps at t  =  520 are shown for (b) and (d).
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figures 10(b) and (d) demonstrate that almost no signal dist
ortion was caused in the interference removal process.

The dual signal subspace projection (DSSP) algorithm was 
applied to the sensor data in figure 3(c) and the data in fig-
ure 9(a). The interference-removal results are shown in fig-
ure 11. The results demonstrate that the DSSP algorithm is 
also effective in the case of nearby interference sources, as 
well as in the case of distant interference sources. The field 
maps in figures 11(b) and (d) demonstrate that the DSSP inter-
ference removal results are free of signal distortion.

6.2.5.  Experiments on sensor noise suppression (SNS).  The 
sensor noise suppression (SNS) algorithm was also tested 
with noisy sensor data. Gaussian noise was added to the 
signal magnetic data in figure 3(a). Here, the signal to noise 
ratio (SNR) was set to 10 where the SNR was defined as 
‖BS‖/‖Bε‖. The time courses of resultant noisy sensor data 
are shown in figure  12(a) and the field map is in (b). The 
SNS denoised results are shown in figure 12(c). Comparison 
between the sensor time courses before SNS denoising in fig-
ure 12(a) and after denoising in (c) shows a significant reduc-
tion in sensor noise through SNS denoising. The denoised 
magnetic field map in figure 12(d) indicates that no observ-
able distortion is caused.

7.  Summary

This paper reviews subspace-based interference removal 
methods with an emphasis on the time domain signal sub-
space. We first provide a concise review on the conventional 
spatial-domain signal subspace and the signal space projec-
tion (SSP) method. We then extend the notion of signal sub-
space to the time domain by proposing a novel definition of 
the time-domain signal subspace, and introduce time domain 
signal space projection. We show that many existing interfer-
ence removal methods can be interpreted as a form of the time 
domain SSP. These methods include adaptive noise cancel-
ing, sensor noise suppression, common temporal subspace 
projection, spatio-temporal signal space separation and the 
recently proposed dual signal subspace projection. We also 
show that the difference between these methods is primar-
ily due to their manner of deriving the interference subspace. 
Numerical examples that illustrate the results of our argu-
ments are provided.
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Appendix A.  Supplementary mathematical 
arguments

A.1.  Proof of equation (18): ES = csp(BS)

We first prove that csp(BS) = csp([yS
1, . . . , yS

K ]) ⊃ ES. To 
do so, we show that if x ∈ ES, x ∈ csp([yS

1, . . . , yS
K ]) holds. 

Assuming that x ∈ ES, the vector x is expressed as a linear 
sum of the lead field vectors lq (q = 1, . . . , Q), such that

x =

Q∑
q=1

ωqlq.� (A.1)

In order to show that x ∈ csp([ yS
1, . . . , yS

K ]), we show that x in 
equation (A.1) is also expressed as a linear sum of yS

j :

x =

K∑
j=1

αjyS
j .� (A.2)

Actually, substituting equation (8), into (A.2), and using equa-
tion (A.1), we get

K∑
j=1

αj

Q∑
q=1

s j
qlq =

Q∑
q=1




K∑
j=1

αjs j
q


 lq =

Q∑
q=1

ωqlq,� (A.3)

where sq(tj) is denoted s j
q. Comparing the coefficients of the 

vector lq on the left and right sides gives following set of Q 
linear equations:

α1s1
1 + · · ·+ αKsK

1 = ω1,

α1s1
2 + · · ·+ αKsK

2 = ω2,
...

...

α1s1
Q + · · ·+ αKsK

Q = ωQ.

Assuming that K  >  Q, for an arbitrary set of ω1, . . . ,ωQ, a 
set of α1, . . . ,αK  exists, and this fact leads to the conclusion 
that equation  (A.2) holds for an arbitrary x (x ∈ ES). Thus, 
the relationship csp([yS

1, . . . , yS
K ]) ⊃ ES holds. Note that we 

assume that the source time courses s1
j , . . . , sK

j  ( j = 1, . . . , Q) 
are linearly independent.

We next show that ES ⊃ csp([yS
1, . . . , yS

K ]). To do so, 
we show that if x ∈ csp([ yS

1, . . . , yS
K ]), x ∈ ES holds. If 

x ∈ csp([yS
1, . . . , yS

K ]), equation  (A.2) holds. Substituting 
equation (8) into equation (A.2), we obtain

x =

K∑
j=1

αjyS
j =

K∑
j=1

αj

Q∑
q=1

s j
qlq =

Q∑
q=1




K∑
j=1

αjs j
q


 lq,� (A.4)

which shows that the vector x is expressed as a linear sum of 
lq(q = 1, . . . , Q), namely, x ∈ ES. This leads to the conclusion 
that ES ⊃ csp([yS

1, . . . , yS
K ]). In summary, since both directions 

csp([yS
1, . . . , yS

K ]) ⊃ ES, and ES ⊃ csp([yS
1, . . . , yS

K ]) hold, the 
relationship ES = csp(BS) holds.

A.2.  Proof of equation (19): KS = rsp(BS)

KS = rsp(BS) can be shown just as ES = csp(BS) was shown 
in appendix A.1. We first show that if x ∈ KS, the relationship 
x ∈ rsp([βS

1, . . . ,βS
M]) holds. If x ∈ KS, the relationship

x =

Q∑
q=1

ωqsq.� (A.5)
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holds. If this vector x sartisfies x ∈ rsp([βS
1, . . . ,βS

M]), x is 
expressed as

x =

M∑
j=1

αjβ
S
j .� (A.6)

Using equation  (13) and the arguments in the preceding 
section, under the assumption M  >  Q, for an arbitrary set 
of ω1, . . . ,ωQ, a set of α1, . . . ,αM  exists. Therefore, equa-
tion (A.6) holds, and rsp([βS

1, . . . ,βS
M]) ⊃ KS also holds.

We next show that if x ∈ rsp([βS
1, . . . ,βS

M]), then x ∈ KS 
holds. If x ∈ rsp([βS

1, . . . ,βS
M]), equation  (A.6) holds. 

Substituting equation (13) into equation (A.6), we get

x =

M∑
j=1

αjβ
S
j =

M∑
j=1

αj

Q∑
q=1

l j
qsq =

Q∑
q=1




M∑
j=1

αjl j
q


 sq.� (A.7)

The equation  above shows that x ∈ KS holds. Threrefore, 
KS ⊃ rsp([βS

1, . . . ,βS
M]) holds. In summary, since both direc-

tions rsp([βS
1, . . . ,βS

M]) ⊂ KS and KS ⊂ rsp([βS
1, . . . ,βS

M]) 
hold, the relationship KS = rsp(BS) holds.

A.3.  Proof of KI = rsp(XBI) where X = P̆S or X = (I − P̆S)

Using the same arguments as in the preceding section, 
we can prove that KI = rsp(XBI) holds where X = P̆S or 
X = (I − P̆S) and P̆S is the the pseudo signal subspace pro-
jector defined in equations (62). Using equation (24), multi-
plying X with the interference vector yI(t) gives

XyI(t) =
P∑

p=1

σp(t)Xξp =

P∑
p=1

σp(t)ξ̆p,� (A.8)

where we use the notation ξ̆p = Xξp. That is, the matrix X 
changes ξp to ξ̆p, but the multiplication by X never affects 
the time course σp(t). Therefore, we get the following 
relationship:

XBI = X




P∑
p=1

σp(t1)ξp, . . . ,
P∑

p=1

σp(tK)ξp




=




P∑
p=1

σp(t1)ξ̆p, . . . ,
P∑

p=1

σp(tK)ξ̆p




=




∑P
p=1[σp(t1), . . . ,σp(tK)]ξ̆

p
1

...∑P
p=1[σp(t1), . . . ,σp(tK)]ξ̆

p
M


 =




∑P
p=1 ξ̆

p
1 σp

...∑P
p=1 ξ̆

p
Mσp


 ,

� (A.9)

where ξ̆ p
1 , . . . , ξ̆ p

M  are the elements of ξ̆p: ξ̆p = [ξ̆ p
1 , . . . , ξ̆ p

M]
T . 

Equation (A.9) shows that denoting the jth row of XBI  as β̆
I
j , 

we get the relationship β̆
I
j ∈ KI . Thus, using the arguments in 

appendix A.2, we can prove that the relationship KI = rsp(XBI) 
holds.

A.4.  Asymptotic equivalence between singular vectors of B 
and BS

Let us respectively denote sample covariance matrices of B, 
BS , and Bε by R, RS , and Rε, which are obtained such that 
R = 1

K BBT , RS = 1
K BSBT

S , and Rε =
1
K BεBT

ε. Assuming that 
BS  and Bε are uncorrelated, from equation (6) we have

R = RS + Rε.� (A.10)

Assuming the noise model in equation (3) and infinite number 
of data samples, the noise covariance matrix is given by

Rε = �2I.� (A.11)

Sample covariance matrices RS  and R are expressed using the 
eigen decomposition as:

RS =

Q∑
j=1

(γS
j )

2uS
j (u

S
j )

T ,� (A.12)

R =

M∑
j=1

γ2
j ujuT

j .� (A.13)

Substituting equations  (A.12), (A.13) and (A.11) into equa-
tion (A.10), we can obtain

M∑
j=1

γ2
j ujuT

j =

Q∑
j=1

(γS
j )

2uS
j (u

S
j )

T + �2
M∑

j=1

uS
j (u

S
j )

T .

� (A.14)
Therefore, we have the following asymptotic relationships:

γ2
j = (γS

j )
2 + �2 for j = 1, . . . , Q,� (A.15)

γ2
j = �2 for j = Q + 1, . . . , M,� (A.16)

uj = uS
j for j = 1, . . . , M.� (A.17)

Equation (A.17) indicates the asymptotic equivalence between 
the singular vectors of B and BS .

A.5.  Row space of sum of matrices

Defining two subspaces as X  and Y , the sum of X  and Y  is 
defined such that [21],

X + Y = {x + y | x ∈ X and y ∈ Y}.� (A.18)

That is, the sum of X  and Y  is defined as a set of all possible 
sums between x (x ∈ X ) and y (y ∈ Y). Then, we show that, 
for two arbitrary matrices X and Y , the relationship

rsp(X + Y) ⊂ rsp(X) + rsp(Y).� (A.19)

holds. To show this, let us denote row vectors of X, Y , and 
Z = X + Y  by x, y, and z, respectively. By definition, for z 
(z ∈ rsp(Z)), the relationship,

z = x + y

holds where x ∈ rsp(X) and y ∈ rsp(Y). Thus,  
z ∈ rsp(X) + rsp(Y) holds, and we have shown 
rsp(X + Y) ⊂ rsp(X) + rsp(Y).
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A.6.  Basis vectors that span sum of subspaces

Next, we derive the basis vectors of X + Y. Sets of the 
basis vectors of X  and Y  are respectively denoted by 
SX = {x1, . . . , xµ} and SY = {y1, . . . , yν}. Let us assume that 
x ∈ X , y ∈ Y, and z ∈ X + Y. We then have

z = x + y =

µ∑
j=1

cjxj +

ν∑
j=1

djyj.

Therefore, the relationship

z ∈ span([x1, . . . , xµ, y1, . . . , yν ])� (A.20)

holds. Defining a set of the basis vecors of X + Y as SX+Y , 
equation (A.20) indicates that SX+Y  is equal to

SX+Y = {x1, . . . , xµ, y1, . . . , yν}
= {x1, . . . , xµ} ∪ {y1, . . . , yν} = SX ∪ SY .

�
(A.21)

The equation above shows that the basis vectors of the sum 
of subspaces are obtained as the union of the basis vector sets 
that span each of the subspaces.

A.7.  Proof: If X ⊂ X ′ and Y ⊂ Y ′, then (X ∩ Y) ⊂ (X ′ ∩ Y ′) 
holds

If x ∈ X ∩ Y, the relationships, x ∈ X  and x ∈ Y , hold. Since 
X ⊂ X ′ and Y ⊂ Y ′, we have x ∈ X ′ and x ∈ Y ′. Therefore, 
x ∈ X ′ ∩ Y ′, and we have shown (X ∩ Y) ⊂ (X ′ ∩ Y ′).

A.8.  Proof of span(SX ∩ SY ) = span(SX ) ∩ span(SY )

Two subspaces are denoted by X  and Y , and sets of their basis 
vectors by SX = {x1, . . . , xµ} and SY = {y1, . . . , yν}. Let us  
also define a set of basis vectors SX ∩ SY = {z1, . . . , zr} where  
the dimension of the intersection is r. If x ∈ span(SX ∩ SY),  
we can write x as a linear sum: x = 

∑r
j=1 wjzj . The fact  

that zj ∈ SX  leads to x ∈ X = span(SX). Also, the fact that 
zj ∈ SY leads to x ∈ Y = span(SY). Therefore, x ∈ X ∩ Y = 
span(SX) ∩ span(SY) holds, and we can show span(X ∩ Y) ⊂ 
span(X ) ∩ span(X ).

The other direction of the proof is as follows. If 
x ∈ span(SX) ∩ span(SY), we have x ∈ span(SX) and 
x ∈ span(SY). Thus, x is expressed as a linear sum of 
basis vectors that belong to both SX  and SY , namely, a lin-
ear sum of {z1, . . . , zr}. Therefore, x ∈ span(SX ∩ SY), and 
this indicates span(SX) ∩ span(SY) ⊂ span(SX ∩ SY). Since 
we have shown the both directions, we have shown 
span(SX ∩ SY) = span(SX) ∩ span(SY).

A.9.  Derivation of basis vectors that span intersection  
of two row spaces

Let us assume that X and Y  are low-rank data matrices. We 
define the basis vectors of rsp(X) as SX = {x1, . . . , xµ} where 
μ is the dimension of rsp(X), and the basis vectors of rsp(Y) 
as SY = {y1, . . . , yν} where ν is the dimension of rsp(Y). The 
procedure used to find a set of basis vectors of rsp(X) ∩ rsp(Y) 
is described below. The procedure is according to [22].

An orthonormal set of basis vectors of the intersection 
is obtained as a set of the principal vectors whose principal 
angles are equal to zero. To find those principal vectors, we 
define matrices whose columns consist of the basis vectors 
such that

U =
[
xT

1 , . . . , xT
µ

]
,� (A.22)

V =
[
yT

1 , . . . , yT
ν

]
.� (A.23)

The results of singular-value decomposition of a matrix UTV  
are expressed as

UTV = Q



cos(θ1) · · · 0

...
. . .

...

0 . . . cos(θν)


TT ,� (A.24)

where Q and T  are matrices whose columns consist of singular 
vectors, and we assume that µ > ν . In equation (A.24), singu-
lar values of the matrix UTV  are equal to the cosines of the 
principal angles between the two subspaces csp([xT

1 , . . . , xT
µ]) 

(= rsp(X)) and csp([yT
1 , . . . , yT

ν ]) (= rsp(Y)). The intersection 
has the property that the principal angles are equal to zero. 
Thus, by observing the relation

cos(θ1) = cos(θ2) = · · · = cos(θr)

≈ 1 > cos(θr+1) � · · · � cos(θν),

the dimension of csp(U) ∩ csp(V), (namely, the dimension of 
rsp(X) ∩ rsp(Y)) is determined to be r. The principal vectors 
are then obtained either as the first r columns of the matrix 
UQ or the first r columns of the matrix VT . Defining the first 
r columns of UQ as ψT

1 , . . . ,ψT
r , the vectors ψ1, . . . ,ψr  form 

an orthonormal basis set for the intersection rsp(X) ∩ rsp(Y).

Appendix B.  Signal space separation (SSS) method

B.1.  Derivation of SSS basis vectors

This section presents an overview of the signal space sepa-
ration (SSS) method [12–14] with an emphasis on the deri-
vation of SSS signal and interference extractors. One of 
basic assumptions of the SSS method is that the sensors are 
installed in a source-free region, which is referred to as the 
sensor region in this paper. Then, the magnetic field at r, B(r) 
is expressed using the spherical polar coordinate r = (r, θ,φ) 
as

B(r) =− µ0

∞∑
�=1

�∑
m=−�

α�,m
ν�,m(θ,φ)

r�+2

− µ0

∞∑
�=1

�∑
m=−�

β�,mr�−1ω�,m(θ,φ),

�

(B.1)

where µ0 indicates the magnetic permeability of free space. 
In equation (B.1), ν�,m(θ,φ) and ω�,m(θ,φ) are the modified 
vector spherical harmonics [12, 23].

In the right-hand-side of equation (B.1), the first term rep-
resents the magnetic field generated from sources located 
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closer to the origin than the sensors. The region closer to the 
origin than the sensors is referred to as the internal region. 
The second term represents the magnetic field from sources 
located farther from the origin than the sensors. The region 
farther from the origin than the sensors is referred to as the 
external region. If an appropriate choice of the origin can 
result in the signal sources of interest to be located within 
the internal region and all interference sources to be located 
within the external region, equation (B.1) provides a natural 
separation between the signal and interference. This is the key 
idea of the SSS method.

Let us derive the SSS basis vectors. To do so, we denote the 
output of the jth sensor by yj, its location by rj and its orienta-
tion by ζ j. Then, we have

yj = B(rj) · ζ j = y j
int + y j

ext,� (B.2)

where the notation · represents the inner product between two 
vectors, and y j

int and y j
ext represent the two components of the 

jth sensor outputs generated from the internal and external 
regions, respectively. These components are expressed as

y j
int = −

∞∑
�=1

�∑
m=−�

α�,m

[
ν�,m(θj,φj) · ζ j

]

r�+2
j

,� (B.3)

y j
ext = −

∞∑
�=1

�∑
m=−�

β�,mr�−1
j

[
ω�,m(θj,φj) · ζ j

]
,� (B.4)

where we set µ0 = 1 for simplicity. Let us define the 
internal and external components of the data vector y as 
yint = [y1

int, . . . , yM
int]

T  and yext = [y1
ext, . . . , yM

ext]
T, which are 

expressed such that

yint =

∞∑
�=1

�∑
m=−�

α�,mc�,m,� (B.5)

yext =

∞∑
�=1

�∑
m=−�

β�,md�,m,� (B.6)

where column vectors c�,m and d�,m are given by

c�,m =




1
r�+2

1
[ν�,m(θ1,φ1) · ζ1]

...
1

r�+2
M

[ν�,m(θM ,φM) · ζM]


 and

d�,m =




r�−1
1 [ω�,m(θ1,φ1) · ζ1]

...

r�−1
M [ω�,m(θM ,φM) · ζM]


 .

�

(B.7)

Truncating the summation with respect to the index � to LC 
for yint and LD for yext, we finally obtain

y = yint + yext =

LC∑
�=1

�∑
m=−�

α�,mc�,m +

LD∑
�=1

�∑
m=−�

β�,md�,m.

� (B.8)
Thus, defining

C = [c1,−1, c1,0, c1,1, . . . , cLC ,LC ] ,� (B.9)

D = [d1,−1, d1,0, d1,1, . . . , dLD,LD ] ,� (B.10)

α = [α1,−1,α1,0,α1,1, . . . ,αLC ,LC ]
T ,� (B.11)

φ = [β1,−1,β1,0,β1,1, . . . ,βLD,LD ]
T ,� (B.12)

we obtain

y = Cα+ Dφ = [C, D]

[
α

φ

]
= Sx� (B.13)

where S = [C, D] and x = [αT ,φT ]T. Here, C is an M × NC  
matrix, and D is an M × ND matrix where

NC = L2
C + 2LC, and ND = L2

D + 2LD.� (B.14)

B.2.  SSS signal and interference extractors

When the key assumption that sources of interest are located 
in the internal region and all interference sources are located 
in the external region holds, yint represents the signal of 
interest and yext represents the interference. Assuming that 
M > NC + ND, and using equation  (B.13), the least squares 
estimate of x is obtained as:

x̂ = (STS)−1STy.� (B.15)

Considering that x̂ = [α̂T , φ̂
T
]T and using α̂, the signal comp

onent yint is estimated as

ŷint = Cα̂.� (B.16)

We now derive the SSS signal and interference extrac-
tors, and rewrite equation  (B.16) using the signal extractor. 
To do so, let us define an operation to make a new column 
vector [ai, . . . , aj]

T  by using the ith to jth components of 
a = [a1, . . . , aM]

T  as [a][i:j] (namely, [a][i:j] = [ai, . . . , aj]
T ). 

From equation (B.15), we have

α̂ =
[
(STS)−1STy

]
[1:NC]

.� (B.17)

When the condition number of a matrix STS is small, i.e. the 
column spaces of C and D are well separated, the relationship

α̂ =
[
(STS)−1STy

]
[1:NC]

≈
[
(STS + κI)−1STy

]
[1:NC]� (B.18)

holds, where κ is a small positive constant10. Using the matrix 
inversion formula

(STS + κI)−1STy = ST(SST + κI)−1y,� (B.19)

we get

α̂ =
[
(STS + κI)−1STy

]
[1:NC]

=
[
ST(SST + κI)−1y

]
[1:NC]

= CT(SST + κI)−1y ≈ CT(SST)−1y = CT(CCT + DDT)−1y.
�

(B.20)

10 This equation simply claims that when the condition number of STS is 
small, nearly identical inverse matrices can be obtained either with or with-
out the regularization term κI.
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Using equation (B.16), we finally obtain

ŷint ≈ CCT(CCT + DDT)−1y.� (B.21)

Accordingly, we can conclude that the interference removal 
by SSS is achieved by multiplying

ΓS = CCT(CCT + DDT)−1� (B.22)

with the data vector y. That is, the matrix ΓS plays a role as 
a filter that passes the signal of interest and blocks the inter-
ference. In this paper, ΓS is called the SSS signal extractor. 
Note that, since relationships (ΓS)

2 = ΓS  and (ΓS)
T = ΓS  do 

not hold, ΓS is not a projector. In exactly the same manner, we 
can derive

ŷext ≈ Dφ̂ ≈ DDT(CCT + DDT)−1y.� (B.23)

Therefore, defining ΓI as

ΓI = DDT(CCT + DDT)−1,� (B.24)

ΓI plays a role as a filter that passes the interference but blocks 
the signal of interest. This ΓI is called the SSS interference 
extractor in this paper.
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