Dual signal subspace projection (DSSP) algorithm

Kensuke Sekihara1,2 and Srikantan S. Nagarajan3

1Tokyo Medical and Dental University
2Signal Analysis Inc.
3University of California, San Francisco
I am talking about the dual signal subspace projection (DSSP) algorithm. This algorithm can remove interference an order-of-magnitude greater than the signal without requiring separate noise measurements.

My talk:

• reviews the spatial-domain and time-domain signal subspaces,
• explains the DSSP algorithm,
• presents results of applications on removal of VNS artifacts,
• compares the DSSP algorithm with the tSSS algorithm.
Conventional (spatial-domain) signal subspace

Data model: $\mathbf{y}(t) = \mathbf{y}_S(t) + \boldsymbol{\varepsilon}$

- data vector
- signal vector
- noise vector

Key relationship: $\mathbf{y}_S(t) = \sum_{q=1}^{Q} s_q(t) \mathbf{l}_q$

Signal vector belongs to the span of these lead field vectors, which is defined as the signal subspace E_S.
We can define the signal subspace in the time-domain as well.

Time-domain signal subspace

We assume time-series measurement at time samples: \(t_1, \ldots, t_K \)

Time course of the \(q \)-th source: \(s_q(t_1), \ldots, s_q(t_K) \)

Source time-course (row) vector: \(s_q = [s_q(t_1), \ldots, s_q(t_K)] \)

\[\text{span}\{s_1, \ldots, s_Q\} \] can be defined as the time-domain signal subspace, which is denoted as \(K_S : K_S = \text{span}\{s_1, \ldots, s_Q\} \).

Let us introduce matrix-based representation.

Data are measured at K time samples: t_1, t_2, \ldots, t_K

Data matrix: $B = [y(t_1), \ldots, y(t_K)]$

Signal matrix: $B_S = [y_S(t_1), \ldots, y_S(t_K)]$

Data model

vector representation

$$y(t) = y_S(t) + \varepsilon$$

matrix representation

$$B = B_S + B_\varepsilon$$

We have symmetric relationships between time- and spatial-domain signal subspaces.

- Each column of $B_S \in E_S$
- Each row of $B_S \in K_S$

- Column space of $B_S = E_S$
- Row space of $B_S = K_S$
Signal space projection (SSP) is a well known algorithm for interference removal.

There are two-types of SSP algorithms

Data model: \(B = B_S + B_I + B_\epsilon \)

Spatial-domain SSP

Compute a projector \(P_I \) from the column space of \(B_I \).

Compute \((I - P_I)B \) to remove \(B_I \).

Time-domain SSP

Compute a projector \(\Pi_I \) from the row space of \(B_I \).

Compute \(B(I - \Pi_I) \) to remove \(B_I \).

DSSP makes use of these two types of SSPs
Structure of the DSSP algorithm

- **DSSP**
 - Pseudo-signal subspace projector

- **bDSSP**
 - Beam space projector

- **tSSS**
 - SSS internal subspace (pseudo) projector

Steps:

1. De-signaling by spatial-domain SSP
2. Estimation of time-domain interference subspace
3. Interference removal by time-domain SSP

Input: Interference overlapped data

Output: Interference removed data
Step#1: De-signaling (signal nulling)

Remove signal components from the data: \(\mathbf{B} = \mathbf{B}_s + \mathbf{B}_I + \mathbf{B}_\varepsilon \)

If the projector onto the signal subspace \(\mathbf{P}_s \) is known, de-signaling is attained by spatial domain SSP, such that:

\[
(\mathbf{I} - \mathbf{P}_s)\mathbf{B} = (\mathbf{I} - \mathbf{P}_s)\mathbf{B}_s + (\mathbf{I} - \mathbf{P}_s)\mathbf{B}_I + (\mathbf{I} - \mathbf{P}_s)\mathbf{B}_\varepsilon \\
= (\mathbf{I} - \mathbf{P}_s)\mathbf{B}_I + (\mathbf{I} - \mathbf{P}_s)\mathbf{B}_\varepsilon
\]

However, because \(\mathbf{P}_s \) is unknown, we must use something that can substitute \(\mathbf{P}_s \).

DSSP uses the pseudo-signal subspace projector.
Augmented voxel lead field matrix over source space

\[L_V = \left[L(r_1), \ldots, L(r_N) \right] \]

SVD of \(L_V \)

\[L_V = U \Gamma V^T = \left[u_1, \ldots, u_M \right] \begin{bmatrix} \gamma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \gamma_M \end{bmatrix} V^T \]

\(\text{span}\{u_1, \ldots, u_\xi\} \) approximates the signal subspace, where \(\gamma_1, \ldots, \gamma_\xi \) are leading \(\xi \) singular values.

Defining the pseudo-signal subspace projector as \(\tilde{P} = \left[u_1, \ldots, u_\xi \right] \left[u_1, \ldots, u_\xi \right]^T \), relationship: \(\tilde{P}B_S = B_S \) approximately holds, and de-signaling \((I - \tilde{P})B_S = 0 \) can be achieved.
Step#2: Estimation of time-domain interference subspace

De-signaling step creates two kinds of these modified data matrices:

\[
\tilde{P}B = \tilde{P}B_S + \tilde{P}B_I + \tilde{P}B_ε
\]

\[
(I - \tilde{P})B = (I - \tilde{P})B_I + (I - \tilde{P})B_ε
\]

We thus have these relationships:

Row space of \(\tilde{P}B \) \(\subset K_S + K_I + K_ε \)

Row space of \((I - \tilde{P})B\) \(\subset K_I + K_ε^\perp \)

After some mathematical arguments, we can show:

\[
K_I \approx (\text{row space of } \tilde{P}B) \cap (\text{row space of } (I - \tilde{P})B)
\]

The basis vectors of \(K_I \) are obtained as the basis vectors of this intersection.

Time-domain SSP is then implemented for interference removal in Step#3.
Computer simulation

- 275 CTF sensor array
- Signal to sensor noise ratio: 4
- Interference to signal ratio: 100
Results of source localization

Source image with no interference: Ground truth

Source image from DSSP results

Signal plus sensor noise

Signal, sensor noise plus interference

Source image from interference-overlapped sensor data
Somatosensory data from a patient with a VNS device

LD1 tactile stimulation

RD1 tactile stimulation

Original sensor data

DSSP results

Source image from DSSP results

Contralateral SI cortices were reconstructed from DSSP results.

Without DSSP, a single strong fake source was reconstructed near the center of the head for the both cases.
Removal of VNS artifacts from epilepsy data

An epileptologist can identify several spikes in these cleaned data.
Example: Localization results of an epileptic spike retrieved by DSSP

Case 1
Sparse Bayes source reconstruction (Champagne) algorithm was used.

- With DSSP, localization was in plausible brain areas. The spike-like voxel time-course was recovered.
- Without DSSP, an activity was localized to obviously wrong location (outside of or near the skull).
Summary of our study conducted to evaluate DSSP’s performance for epilepsy MEG data

Data from 10 patients were analyzed with and without DSSP.

DSSP is a powerful tool to retrieve clinical information when large VNS artifacts exist.

Comparison between DSSP and tSSS algorithms

These algorithms differ only in the projectors used in Step#1

DSSP
Pseudo-signal subspace projector

tSSS
SSS internal subspace (pseudo) projector

Interference overlapped data

Step#1
De-signaling by spatial-domain SSP

Step#2
Estimation of time-domain interference subspace

Step#3
Interference removal by time-domain SSP

Interference removed data
Difference in their performances

Non-MEG applications

tSSS cannot be applied to data taken from non-helmet-type sensor arrays.

DSSP can be and has been used in artifact removal in functional spinal cord biomagnetic imaging that uses a flat sensor array.

MEG applications (using helmet sensor arrays)

Their overall performances are more or less the same, because the performances of the de-signaling projectors are similar.

There is one difference. In tSSS, the de-signaling (internal) region can be smaller than the source space, and this fact requires users to choose the origin location with some care.
tSSS and DSSP de-signaling (internal) regions: Example with CTF sensor array

Plots of de-signaling gain $\phi = \frac{(I - P)B_S}{\|B_S\|}$

P: internal subspace projector (tSSS)
$DSSP$: pseudo signal subspace projector (DSSP)

De-signaling region for tSSS is a bit smaller than the source space.
Two cases where the origin is appropriately and inappropriately set.

If signal source is outside the internal region, the signal magnetic field has external components.
tSSS results are distorted, if signal magnetic field has external components, because the algorithm considers the signal external components to be a part of interference and time-domain SSP removes these components.
Related presentation

The beamspace DSSP (bDSSP) algorithm is presented in Poster #M-084 in Poster Session M2, 6:00—7:30PM on Monday.

The bDSSP algorithm is an extended version of DSSP.

I can selectively detect a deep source by suppressing stronger signals from superficial sources.
Related publications

DSSP algorithm

Time-Domain Signal Subspace

bDSSP algorithm

Application to VNS artifact removal

QR codes for the links to download the reprints are available at Poster #M-084 in Poster Session M2, 6:00—7:30PM on Monday.
Thank you very much for your attention.