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Riemannian distances are invariant to

forward and inverse mappings in MEG/EEG

Kensuke Sekihara

Introduction

The arguments in this note are inspired from [1] (maybe my interpretation of the arguments in [1]).

One of large application fields of MEG/EEG is the inference of brain’s internal states (such as
subject’s will/intention or subject’s personal preference) based only on MEG/EEG signals. For such
applications, we deal with the signal classification problems, and quite often, second-order statistics
(such as the covariance, correlation, and coherence) are used. (In this note, it is assumed that
covariance matrices are used.)

Particulary when MEG is used, there are two choices , which are using the sensor-space covariance
or using the source-space covariance. In most cases, such choices have been made empirically, and
so far very little have been reported on their rigorous comparisons as far as I know. This note
proves the theoretical equivalence between the uses of these two-types of covariance matrices for signal
classification, if the Riemannian distance, called the affine invariant Riemannian metric (AIRM), are
used as a measure for their similaity or de-similarity.

Data model and definitions

MEG data model is
y = Hx + ε. (1)

Here, y, ε ∈ RM×1, H ∈ RM×Q, and x ∈ RQ×1, where M is the number of sensors and Q is the
number of sources. (We assume the scalar lead field.) We can say (in a manner modern mathematics
prefers ) that there is a (surjective) map H from the source space to the sensor space1. Inverse
algorithms try to obtain inverse maps from the sensor space to the source space. Once an appropriate
inverse map is obtained, we perform the source localization,

x̂ = Wy.

Here, W is a map from the source space to the sensor space. The relationship between covariance
matrices in the source and sensor spaces is

Ry = HRxHT + Rε,

where Rx, Rx, and Rε respectively denote the source, sensor, and noise covariance matries

1The source and sensor spaces are the vector spaces of the source vector x and the observation vector y.
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A simple example

We use an example for classification between two conditions. Sensor-data covariance matrices corre-
sponding to conditions A and B are given by RA

y and RB
y . The essential step for the signal classification

is quantitatively assess the difference between RA
y and RB

y ; the difference is called the distance be-
tween RA

y and RB
y . In this note, this distance is computed as the geodesic distance on the SPD

manifold, δ(RA
y , RB

y ), derived using the affine invariant Riemannian metric (AIRM). The AIRM-base
geodesic distance is given by

δ(RA
y , RB

y ) = ‖LogRA
y − LogRB

y ‖ = ‖Log
[
(RB

y )−1/2RA
y (RB

y )−1/2
]
‖.

Isometric mapping within the SPD manifold

Let us consider a map FX : P(n) → P(n):

FX(P ) = XT PX (2)

where X is a non-singular matrix. This map is an isometory, and preserves the length of a path in
P(n), such that

δ(FX(A), FX(B)) = δ(A,B). (3)

That is, the geodesic distance between A and B is equal to that between FX(A) and FX(B).

Modified data model

To make use of this isometry, we approximate the sensor noise term as

ε = Au, (4)

where A ∈ RM×(M−Q) is a mixing matrix, and u ∈ R(M−Q)×1 indicates factors. That is, the sensor
noise is expressed as the summation of M − Q factor activities. Since the sensor noise should be
expressed as M factor activities, the assumption in Eq (4) is obviously wrong. However, if M À Q,
Eq (4) may be an acceptable assumption.

The MEG data model then is rewritten as

y = Hx + Au = [H, A]
[

x
u

]
= Fz. (5)

Here, F is an M ×M non-singular square matrix, and z ∈ RM×1, which is a vector containing source
and noise activities.

Geodesic distances are the same between source and sensor spaces

The covariance matrix of z is defined as Rz:

Ry = FRzF
T .
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Since F is a non-singular matrix, the above equation indicates an isometric mapping (Eq. (2)) from
Rz to Ry. Therefore, using Eq. (3), we have

δ(RA
y ,RB

y ) = δ(FRA
z F T , FRB

z F T ) = δ(RA
z , RB

z ). (6)

Here, Rz is expressed as

Rz = E(zzT ) = E

[[
x
u

]
[xT , uT ]

]
=[

E(xxT ) E(xuT )
E(uxT ) E(uuT )

]
=

[
E(xxT ) 0

0 E(uuT )

]
=

[
Rx 0
0 Ru

]
. (7)

Therefore, the geodesic distance is expressed as

δ(RA
z , RB

z ) = ‖Log
[

RA
x 0

0 Ru

]
− Log

[
RB

x 0
0 Ru

]
‖

= ‖Log

([
RB

x 0
0 Ru

]−1/2 [
RA

x 0
0 Ru

] [
RB

x 0
0 Ru

]−1/2
)
‖

= ‖Log

([
(RB

x )−1/2RA
x 0

0 R1/2
u

] [
RB

x 0
0 Ru

]−1/2
)
‖ = ‖Log

[
(RB

x )−1/2RA
x (RB

x )−1/2 0
0 I

]
‖

= ‖Log
[
(RB

x )−1/2RA
x (RB

x )−1/2
]
‖. (8)

The proof that the equation:

‖Log
[

(RB
x )−1/2RA

x (RB
x )−1/2 0

0 I

]
‖ = ‖Log

[
(RB

x )−1/2RA
x (RB

x )−1/2
]
‖ (9)

holds will be shown in Appendix.

On the other hand, we have

δ(RA
x , RB

x ) = ‖LogRA
x − LogRB

x ‖ = ‖Log
[
(RB

x )−1/2RA
x (RB

x )−1/2
]
‖. (10)

Therefore, we have proved that the relationship

δ(RA
z , RB

z ) = δ(RA
x , RB

x ) (11)

holds. Combining Eqs. (6) and (11) we finally have

δ(RA
y , RB

y ) = δ(RA
x , RB

x ). (12)

The above equation implies that the geodesic distance obtained from AIRM is the same between the
sensor and source covariance matrices.

Summary

We have shown that the AIRM-based Riemannian diatnce is invariant to the forward and inverse
mappings between the source and sensor spaces in MEG/EEG.
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A Proof of Eq.(9)

This appendix proves that the relationship,

‖Log
[

P 0
0 I

]
‖ = ‖LogP ‖

holds where P ∈ RQ×Q is a symmetric positive definite (SPD) matrix, and I ∈ R(M−Q)×(M−Q) is an
identity matrix.

Since P is a SPD, its eigen-decomposition is given by

P =
Q∑

j=1

λjdjd
T
j ,

where λj is a positive eigenvalue, and [d1, . . . , dQ] is a Q × Q orthogonal matrix. Also, the identity
matrix I can be expressed as

I =
M−Q∑
j=1

eje
T
j ,

where [e1, . . . , eM−Q] is an (M − Q) × (M − Q) orthogonal matrix. Then, we have[
P 0
0 I

]
=

[ ∑Q
j=1 λjdjd

T
j 0

0
∑M−Q

j=1 eje
T
j

]
(13)

Let us define column vectors αj ∈ RM×1 (j = 1, . . . ,M) such that

αj =


dj

0
...
0

 for j = 1, . . . , Q, and αQ+j =


0
...
0
ej

 for j = 1, . . . ,M − Q,

and define an M × M matrix S such that

S = [α1, . . . , αQ, αQ+1, . . . , αM ]



λ1 0 · · · · · · · · 0
0 λ2 · · · · · · ·
...

...
. . .

...
...

...
...

0 · · · · λQ 0 · · · 0
· · · · · · 1 · · · 0
...

... · · ·
...

...
. . .

...
0 · · · · · 0 · · · 1





αT
1
...

αT
Q

αT
Q+1
...

αT
M



=
Q∑

j=1

λjαjα
T
j +

M∑
j=Q+1

αjα
T
j (14)
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In the right-most side of the above equation, the first term is expressed as

Q∑
j=1

λjαjα
T
j =

Q∑
j=1

λj


dj

0
...
0

 [dT
j , 0, . . . , 0] =

[ ∑Q
j=1 λjdjd

T
j 0

0 0

]

The second term is expressed as

M∑
j=Q+1

λjαjα
T
j =

M∑
j=Q+1


0
...
0

e(j−Q)

 [0, . . . , 0, eT
(j−Q)] =

[
0 0
0

∑M−Q
j=1 eje

T
j

]

Therefore, we get

S =
[ ∑Q

j=1 λjdjd
T
j 0

0 0

]
+

[
0 0
0

∑M−Q
j=1 eje

T
j

]
=

[
P 0
0 I

]
. (15)

Eq. (14) is turned out to be the eigendecomposition of S. Since we have

Log
[

P 0
0 I

]
= [α1, . . . , αQ,αQ+1, . . . , αM ]



log λ1 0 · · · · · · · · 0
0 log λ2 · · · · · · ·
...

...
. . .

...
...

...
...

0 · · · · log λQ 0 · · · 0
· · · · · · 0 · · · 0
...

... · · ·
...

...
. . .

...
0 · · · · · 0 · · · 0





αT
1
...

αT
Q

αT
Q+1
...

αT
M



= [α1, . . . , αQ]


log λ1 0 · · · 0

0 log λ2 · · ·
...

...
...

. . . 0
0 · · · 0 log λQ


 αT

1
...

αT
Q

 , (16)

we finally get

‖Log
[

P 0
0 I

]
‖ = ‖

[
LogP 0

0 0

]
‖ = ‖LogP ‖. (17)

B Appendix: properties of matrix exponential function

For a matrix X (X ∈ M(n)), the matrix exponential function eX is defined such that

eX =
∞∑

k=0

1
k!

Xk. (18)

The matrix exponential function has following properties:

5



1. e0 = I

2. If A is a diagonal matrix, i.e., A = diag(λ1, . . . , λn), then, eA = diag(eλ1 , . . . , eλn).

3. If AB = BA (if A and B commute), then eAeB = eAB.

4. eaAebA = e(a+b)A because aA and bA commute.

5. eAe−A = I because setting a = 1 and b = −1 in the above equation.

6. e−A = (eA)−1.

7. If A = PΛP−1 and Λ = diag(λ1, . . . , λn),

eA = P diag(eλ1 , . . . , eλn)P−1,

holds, because (PΛP−1)k = PΛkP−1 holds.

8. If A = UΛUT and Λ = diag(λ1, . . . , λn),

eA = U diag(eλ1 , . . . , eλn)UT

holds, because (UΛUT )k = UΛkUT holds.

9. d
dte

tA = AetA.

10. det(eA) = etr(A).

11. Matrix Log function: For A ∈ GL(n), matrix Log function is defined as

LogA = −
∞∑

k=1

(I − A)k

k
.

Actually, If A = PΛP−1 and Λ = diag(λ1, . . . , λn), the matrix log function is computed using

LogA = P diag [log(λ1), . . . , log(λn)]P−1.
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